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ABSTRACT

Recent progress in modeling of transport phenomena during dendritic alloy

solidification is reviewed. Starting from the basic theorems of volume averaging, a general

multiphase modeling framework is outlined. This framework allows for the incorporation

of a variety of microscale phenomena in the macroscopic transport equations. For the case

of diffusion dominated solidification, a simplified set of model equations is examined in

detail and validated through comparisons with numerous experimental data for both

columnar and equiaxed dendritic growth. This provides a critical assessment of the various

model assumptions. Models that include melt flow and solid phase transport are also

discussed, although their validation is still at an early stage. Several numerical results are

presented that illustrate some of the profound effects of convective transport on the final

compositional and structural characteristics of a solidified part. Important issues that

deserve continuing attention are identified.
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interfacial surface area

area of the solid/interdendritic liquid interface

area of the dendrite envelope

concentration of a chemical species

specific heat

settling ratio

shape factor function

mean characteristic length or diameter of the solid phase

mean characteristic diameter of the dendrite envelope

mass diffusion coefficient

temperature gradient

chill heat transfer coefficient or enthalpy

Ivantsov function

species diffusion flux

interracial species transfer rate per unit of volume

thermal conductivity

species diffusion length

liquidus line slope

solid/liquid interfacial drag

equiaxed nuclei density

nucleation rate

outwardly directed unit normal vector

envelope growth Peclet number, _,neRf/D i

multiphase Pelcet number, £1lVl - Vsl de/D 1

solutal Peclet number at the dendrite tip, VtRt/2D i

ambient Pelcet number for dendrite tips, Ivl - vsl Rt/D 1



qext external heat flux

R radius

S interfacial area concentration

t time

T temperature

J" cooling rate, _Tf0t

v velocity

Vk volume of phase k

Vo averaging volume

Vt dendrite tip velocity

w interface velocity

X phase function

Greek Symbols

F

Ah

AT

E

Esi

1(

l( v

Ip

P

diffusion Fourier number, 4Dstff/_

dimensionless parameter, Eq.(82)

interfacial phase change rate or Gibbs-Thomson coefficient

latent heat of phase change

undercooling

volume fraction

internal solid fraction, _s/(es + ed)

partition coefficient

flow partition coefficient

dendrite arm spacing

slip coefficient for solid

shape factor

density
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Ix viscosity

cy* stability constant

shear stress

a field property

solutal supersaturation

Subscripts

d interdendritic liquid

e dendrite envelope

E eutectic point

f total liquid phase (d+l)

g grain

j phase j

k phase k

kj pertinent to phase k on the k-j interface

1 extradendritic liquid

L liquidus

ld pertinent to the extradendritic liquid at the inter- and extra-dendritic liquid interface

ls pertinent to the liquid phase at the solid-liquid interface

m melting point of pure metals

n normal direction

N nucleation

o initial state

s solid

sd pertinent to the solid phase at the solid-interdendritic liquid interface

sl pertinent to the solid phase at the solid-liquid interface

t dendrite tip or tangential
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w wall

1 primary

2 secondary

Superscripts

c critical

j due to species gradients

t macroscopic dispersion

F due to interface movement

- interfacial area-averaged

* effective

^ fluctuating component

I. INTRODUCTION

Microstructural evolution and the distribution of phases and species are some of the

most fundamental and important issues in the science and technology of solidification of

metal alloys. The structure determines the mechanical properties of a casting or weld, and

certain chemical inhomogeneities can cause serious defects. Therefore, the metallurgist has

a keen interest in understanding, modeling, and controlling the physical phenomena

occurring during the liquid to solid transformation. For millennia, the optimization of

material properties essentially relied on a trial-and-error process, where differefit melt

compositions and casting practices were tried and the structure and properties of the

solidified part were subsequently examined. It was not until the advent of computers that

numerical solutions of the heat equation could be used to analyze casting and welding

processes. The connection to microstructure predictions was made by the early work of

Oldfield [1] on cast iron in the late 1960s. Almost at the same time, Flemings and

coworkers [2,3] started to model melt flow during solidification in order to predict



7

compositional inhomogeneities, i.e., macrosegregation,on the scale of a casting.

Significant progress in rigorously linking microstructural evolution relations to

macroscopic(systemscale)heatflow calculationshasonlybeenmadesincethemid-1980s.

Similarly, but separately, the calculation of melt flow, solid phase transport, and

macrosegregationdid notbecomecommonplaceuntil fully couplednumericalmethodsfor

solvingtheNavier-Stokesequationsreachedaconsiderablelevelof maturity,in the 1980s.

Although thereis a tight coupling betweenmicrostructureandconvectivetransport,the

simultaneouspredictionof bothhasonly beenattemptedin the 1990s.Numerousrecent

reviewsareavailablethat summarizethe progressin theseareas[4-11], and the latest

developmentscanbefoundin conferenceproceedings[12-15].

Solidification of metal alloys is characterizedby the presenceof a variety of

microscopicallycomplexinterfacialstructures.Themostcommonstructureis thedendrite,

which caneither exist in a columnaror equiaxedform, as illustrated in Fig.la. The

macroscopicregionover which suchsolid/liquid interfacesexist is loosely termedthe

mushyzone,so asto distinguishit from thepureliquid andfully solidified regions,see

Fig.1b. Themushyzoneis roughlyboundedby thesolidusandliquidus isotherms,which

canbeobtainedfor a givenalloy compositionfrom anequilibriumphasediagram.For the

simplephasediagramshownin Fig.lc, the last liquid to solidify is often of the eutectic

composition,andtheeutecticreactiontransformsthis liquid into thecxand13solidphases.

The phasediagramalsodescribesthedifferent solubilitiesof thesolutein thesolid and

liquid phasesasa function of temperature.Thesegregationof soluteat the solid/liquid

interfacecausestheestablishmentof microscopicconcentrationgradientsin theliquid and

solid phasesonbothsidesof the interface,and,in thepresenceof convection,large-scale

compositional inhomogeneities.Theseand otherbasicsof alloy solidification arewell

explainedin textbooks[3, 16-18].

Froma thermalscientist'sperspective,themushyzonecanbeviewedasamultiphase,

multicomponentsystemwith phasechange,featuringmultiple anddisparatemicroscopic
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interfaciallengthscales.Justasin boilingof liquid mixtures,thesystem-scaletransportof

the phases(solid and liquid) by convection, together with heat transfer and solute

redistribution,play importantroles.Furthermore,thenucleation,growth,andmorphology

of theevolving phase(s)needcarefulconsideration.However,therearenumerousissues

thatareuniqueto alloysolidification,themostimportantof which is thepreservationof the

microstructureandcompositionalinhomogeneitiesin thesolidifiedmaterial.As in themore

recentanalysesof othermultiphasesystems,solidificationis startingto bemodeledusing

rigorouslyderivedcontinuumconservationequations[8]. In thisregard,theincorporation

of properconstitutiverelationsdescribingtheinterfacetopologyandthephaseinteractions

on a microscopic scale continues to be the main challenge.Although the study of

microscopic phase interactions during solidification is a time-honored area within

metallurgy [18], much of the available information remains empirical. For example, it is

still largely impossible to quantify the interactions between an evolving microstructure and

convective melt flow. In fact, it can safely be said that the prediction of the structural and

compositional features of a solidified metal alloy on the scale of a casting or weld is still

more an art than science.

The purpose of this chapter is to review some of the most recent modeling work on

alloy solidification, where a tight coupling between microstructure and transport

phenomena at both microscopic and macroscopic scales is pursued. The emphasis is on

fundamentals and on exposing areas of future research. Despite the fact that some of the

recent work is already being applied to industrially relevant multicomponent alloys and real

shaped castings (see [15]), the review is limited to primary dendritic solidification of binary

alloys in simple molds.

The following section gives several examples of experiments that illustrate important

micro-/macroscopic aspects of alloy solidification. Section 3 discusses the general

modeling approach propagated here. In order to provide some perspective to the many

modeling issues involved, Section 4 concentrates on studies that consider diffusional



transport only. The inclusion of melt convectionand the transportof solid phasesis

reviewedin Section5, while theconclusionsandrecommendationsfor futureresearchare

summarizedin Section6.

9

2. OBSERVATIONS OF MICRO-MACROSCOPIC PHENOMENA IN

ALLOY SOLIDIFICATION

Figure 2a shows a typical columnar dendritic mushy zone for solidification from below

of the transparent model alloy SCN-ethanol, with a close-up of the dendrite tip region

provided in the lower portion of Fig.2b [19]. On the microscopic scale, we observe a

porous structure consisting of primary, secondary and higher order dendrite arms. In the

figure, the primary dendrite ann spacing is roughly 0.4 mm. The structure in the tip region

is highly irregular, and it is shown below that the growth kinetics of the dendrite tips play a

special role. The tips grow into an undercooled melt, which can be inferred from the

presence of growing equiaxed crystals above the columnar front (Fig.2b). Undercooling

refers to the melt being in a metastable state below the equilibrium liquidus line and

represents the driving force for dendrite tip growth. On a larger scale, it can be seen that the

primary dendrites do not exactly grow in a direction opposite to the heat flow (Fig.2a).

Each cluster of dendrites having the same orientation constitutes a crystal or grain, and the

boundaries between the grains are a common feature of etched cross sections of solidified

metal alloys (see below).

Much research has been performed to predict the microstructural features in dendritic

solidification. Important considerations are the stability of a solid/liquid interface,

coarsening or ripening of the smallest-scale dendrite arms as a function of time, and the

growth velocity and radius of the dendrite tip. Some of the available semi-empirical

relations are presented below in Section 4. Almost all quantitative information is limited to

diffusion-controlled solidification, and the important effects of convection are mostly

ignored in the metallurgical literature. The dendritic structure persists in the as-cast alloy
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due to its compositionallysegregatednature(microsegregation).Second(solid) phases,

suchastheeutectic,andmicroporosityareusuallyfoundin theinterdendriticspaces.

Themicrostructurealsocontrolsthemelt flow throughtheporousmushyzoneduring

solidificationand, thus,the occurrenceof macrosegregation.Furthermore,flow/dendrite

interactionsmay play an importantrole in generatingfree equiaxedcrystals.Figure 3

illustratestheformationof achannelin acolumnardendriticmushyzonedueto local flow

instabilities [20]. Suchflow channelscauseseveremacrosegregationin the form of A-

segregatesor freckles in castings.Fragmentationof the dendritic structurewithin the

channels(Fig.3b)andthesubsequentejectionof fragmentsby theflow (Fig.3a)is oneof

themechanismsassociatedwith theformationof equiaxedgrains(seebelow).

Figure 4 illustrates several additional aspectsof equiaxed solidification. The

experiments[21] wereperformedusingthetransparentNH4CI-H20 modelsolution.On

themacroscopicscale,a swarmof freelymovingcrystalsexistsin theupperportionof the

testcell, while the lowerportionconsistsof apackedbedof sedimentedcrystals.Figure4a

is a shadowgraphimage,visualizingthedensitygradientsin themelt.A closeinspection

revealsthepresenceof asolutalplumein thewakeof eachsedimentingcrystal,implying

thatthecrystalsaregrowingwhilemovingthroughtheundercooledmelt(the latentheatas

well asthesolutearerejectedinto theliquid phase).Theirregularnatureof thepackedbed

iscausedby thecomplexthermosolutalconvectioncurrentsin themelt.An importantissue

is the mechanismsassociatedwith the origin of the equiaxedgrainsand their number

density. Numerous theorieshave been put forward and quantitative models are not

available.Thetheoriescanbe roughlydivided into two groups[22]: (i) heterogeneous

nucleation in the bulk melt, which canbe promotedthroughthe useof grain refiners

(inoculants)and(ii) separationof smalldendritefragmentsfrom themold wall, theupper

free liquid surfaceor alreadyexistingcolumnardendritesthroughmechanicalforcesor,

more likely, a localizedremelting ("pinch off") process.In the latter mechanism,melt
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convectionis necessaryto transportthefragmentsinto the interiorbulk liquid wherethey

maysurviveandgrowintoequiaxedcrystals.

A fine equiaxedgrain structureis often preferredover a columnarstructurefor a

numberof reasons(single-crystalturbine bladesarean important exception)[23]: (i)

uniform mechanicalpropertiesandbetteroverall strengthandfatiguelife, (ii) morefinely

dispersedsecondphasesandporosity,(iii) lessmacrosegregation,(iv) improvedfeedingto

compensatefor shrinkageandlesshot cracking,(v) improvedsurfaceproperties,and(vi)

improvedmachinabilityandfabricability.However,in manycastingsandweldsa mixed

columnar/equiaxedgrain structureis presentand it becomescrucial to understandand

controlthecolunmar-to-equiaxedtransition(CET).A largenumberof studieshavetried to

clarify themainfactorsthatinfluencetheCET(WangandBeckermann[24] reviewsomeof

them).As anexample,considerthesimpleone-dimensionalcastingexperimentsbyZiv and

Weinberg[25]. Here,anAI-3wt% Cualloy wasunidirectionallysolidified from below.

Theoverallconfigurationis thermallyandsolutallystable,thusminimizingtheinfluenceof

melt convection.Figure5ashowsa sequenceof grainstructureswheretheheattransfer

coefficientat thebottomwasvaried.It canbeseenthatthe lengthof thecolumnarregion

increaseswith strongercooling. It is clear that a simple heatflow and solid fraction

evolution modelwouldnotcapturethiseffect.Obviously,a detailedconsiderationof the

competitivegrowthof columnarandequiaxedcrystalsonamicroscopicscaleis necessary.

A yet more intriguing effect is shownin Fig.5b, wherethe cooling rateand all other

conditionswereidentical,exceptfor theadditionof minuteamountsof a grainrefiner(here

TiB2). With increasingamountsof grain refiner, the structurechangesfrom a coarse-

grainedmixed structureto a fine-grainedfully equiaxedone.Other experimentshave

examined the influences of initial melt superheat,melt composition, mold surface

roughness,mold vibration,mold rotation,stirring,andothers.Interestingaccountsof this

researchcanbefoundin [26].Theseeffectshavebeenunderstoodonaqualitativelevel for

decades.Nonetheless,the prediction of the natureand size distribution of grains in
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solidified metal alloys hasbeenlargely preventedby the intricate physical phenomena

involved.

Examplesof the effectsof microstructureon macroscopictransportareprovided in

Figs.6 to 8. Finnet al. [27] performedexperimentsoncontinuouscastingof aroundA1-

4.5wt%Cu ingotin theconfigurationillustratedin Fig.6a.Thesuperheatedalloy is poured

into thewatercooledmoldatthesamemassflow rateat whichthecastingis withdrawnat

thebottom.Macrosegregationdataareshownin Fig.6bfor two differentexperiments.No

grain refiner was usedin the first experiment,and the microstructurewas columnar

dendriticasshownin Fig.6c.In thesecondexperiment,theuseof agrainrefiner resulted

in themixed globular-dendriticequiaxedstructureof Fig.6dthroughoutmostof the ingot

crosssection.The macrosegregationprofiles for bothexperimentsshowstrongpositive

segregationnearthe ingotsurface(termedinversesegregation),whichcanbeexplainedby

solidificationcontractionandbackflow of Cu-enrichedliquid throughthecoherentingot

shell first formed in the mold [27]. Largedifferencesin the macrosegregationprofiles

between the two experimentscan be observednear the centerline (Fig.6b). These

differenceswereattributedto the influenceof themicrostructureon theresistanceit offers

to the interdendriticmelt flow, ascharacterizedby thepermeabilityof themushyzone.In

the highly dendritic columnar casewithout grain refiner, the relatively denseand

impermeablemushyregionprohibitedtheadvectionof enrichedinterdendriticliquid to the

ingot centerline,resultingin negativecenterlinesegregation.Ontheotherhand,themore

coarseandpermeableequiaxedstructureof thegrainrefinedingotallowedfor theadvection

of enrichedfluid toward thecenterlineproducingpositive segregationthere [27]. This

positive centerline macrosegregationdoes not support previous theories on how the

transportandsettlingof free,unattached,soluteleandendritescausesnegativecenterline

segregation[28]. However,thedetectionof aduplexstructure,consistingof a mixtureof

fine dendritesandcoarseequiaxedgrains,nearthecenterlinein the grain refined case

(Fig.6d) can be regardedas an indication of the presenceof solid phasetransport.
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Obviously,theability to modelandpredictthemicrostructuralevolutiontogetherwith the

melt flow, solid transport,heat transfer,and advectionof solutewould have a strong

impactonunderstandingandcontrollingtheseundesirablemacrosegregationpatterns.

Another exampleof the interplaybetweengrain structureand macrosegregationis

provided in Fig.7. Figures7aand 7b arecrosssectionsfrom a low-alloy steelcasting

solidified in a simplesandmold [29]. Figure7aclearlyshowsan innerequiaxedzonein

additionto thecolumnardendritesextendingfrom themoldwalls. In Fig.7b,thepoint of

significancehereis thenegativecarbonmacrosegregationregionthatdirectly corresponds

to theinnerequiaxedzone.Althoughsuchobservationsarenotnew,thedetailedtransport

phenomenaleadingto thenegativesegregationin equiaxedsolidification,aswell asthe

interactionsbetweenequiaxedandcolumnargrowth,arepoorlyunderstood.

As alreadymentioned,oneissuethatseriouslyhamperspresentmodelingefforts is the

uncertaintyassociatedwith theoriginof theequiaxedcrystalsandtheir transport.Figure8

illustratesthesettlingof equiaxedcrystalsin a solidifying Pb-Sneutecticalloy [30]. The

micrographsindicatethepresenceof equiaxed,Pb-richcrystalsbothnearthebottomof the

sampleandaboveastainlesssteelscreenwhichwasinsertednearthecenter.As expected,

the corresponding macrosegregationpattern shows a strong increase in the Pb

concentrationtowardsthescreenandthesamplebottom,with a-20% jump at thelocation

of the screen.This experimentis especially intricate, becausethe eutectic melt was

substantiallyundercooledbeforesolidification. Without undercoolingtheentire sample

would consist of a eutectic structurewith no appreciablemacrosegregation[3Q]. The

undercoolingcausestheprimary Pb phaseto nucleatefirst. The Pb-richcrystalssettle

down and leave a Sn-rich melt behind, so that primary Sn-rich dendritesgrow in a

columnarfashionbothfrom thetopandbelowthescreen.Eutecticexistsonly betweenthe

columnar and equiaxedregions. Apparently, the modeling of the nucleation in the

undercooledmeltrequh'esa thoroughunderstandingof the interfacialenergiesin thePb-Sn

systemandothernon-equilibriumthermodynamicsissues.
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This sectionhasillustratednomore thana few examplesof the complex nucleation,

growth, and transport phenomena occurring in alloy solidification. In every case, their

modeling involves detailed and simultaneous consideration of processes occurring over

multiple and disparate length (or time) scales. It should be clear now that the mushy zone is

not just a porous medium of some average structure with the melt flowing through it.

Instead, alloy solidification is a physically rich area that has evaded modeling efforts except

in a few limiting cases.
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15

Modeling of transport phenomena occurring during dendritic alloy solidification has

received considerable research attention in the past several decades [8,10]. Recently,

interest has been focusing on an important and promising approach, namely micro-

macroscopic modeling. The main goal of this approach is to incorporate descriptions of

fundamental microscopic phenomena, such as nucleation, undercooling and grain growth,

into macroscopic heat flow calculations in order to predict microstructure formation of a

solidifying material on the system scale. Reviews of micro-macroscopic modeling have

been provided by Rappaz [4] and Stefanescu [9].

In an attempt to achieve detailed coupling between micro- and macroscopic phenomena,

Ni and Beckermann [31] proposed a two-phase model for mass, momentum, energy and

species transport in a solidifying system. The model is formulated by viewing the solid and

liquid phases separately and averaging the field properties of each phase over a

representative elementary volume (REV). Through the volume averaging process, phase

interaction terms appear in the resulting macroscopic balance equations that reflect the

effects of the transport phenomena occurring on the microscopic scale. These interaction

terms are all proportional to the solid/liquid interfacial area per unit volume, which

represents the sole microscopic length scale. The same volume averaging technique was

employed by Ganesan and Poirier [32] to derive macroscopic mass and momentum

equations for a stationary solid phase.

Nevertheless, volume averaged two-phase models are not well suited for incorporating

microstructural features present in dendritic solidification. This problem originates from the

single-scale averaged description of phase behaviors. In traditional volume averaging, no

distinction is made between properties of a phase associated with different microscopic

length scales. The phenomena occurring on various microscopic length scales are smeared

and modeled using a single mean characteristic length (i.e., the interfacial area

concentration). Refen'ing back to Fig.2, it can be seen that, in dendritic growth there exist



at leastthreedisparatemicroscopiclengthscalesthataresmallerthanthecharacteristicsize

of an averagingvolume: (i) the overall sizeof the crystal or the primary dendrite arm

spacing,(ii) thesecondaryandhigher-orderdendritearmspacings,and(iii) theradiusof a

dendritetip. The transportphenomenaoccurringon thevariousmicroscopicscalesdiffer

greatlyfrom oneanotherandcannotbewelldescribedbasedonasinglemeancharacteristic

length, although they areall taking placewithin the sameaveragingvolume. In other

words,asingle-scalemodelprovidesinsufficientresolutionto capturedynamicbehaviors

on severalmicroscopic length scales.Such resolution is, however, required for the

completeincorporationof microscopiceffectsin amacroscopicmodelandthepredictionof

microstructureformationin asolidifyingsystem.

Considerableprogresshasbeenmadeto accountfor the heterogeneousnatureof

microstructuresin themicro-macroscopicmodelingof bothequiaxed[33-35]andcolumnar

[36,37]dendritic solidification.In themodelsof equiaxeddendriticgrowth,thenecessary

resolutionis obtainedby viewingtheliquidphasein acontrolvolumeastwodistinctfluids

associatedwith two lengthscales:the liquid within thedendritic structureandthe liquid

outsidetheequiaxedgrain.It is thenpossibleto separatelyaccountfor thedifferent solute

diffusion phenomenain theinterdendriticstructureandthedendritetip region,andmore

importantly,to incorporateagrowthmodelfor thedendritetips.Similarly,whenanalyzing

columnardendriticsolidification,FloodandHunt [36] distinguishbetweentheliquid in the

interdendritic regionandthat outsidethecolumnarfront, and alsotakeinto accountthe

undercoolingat theprimarydendritetips.

Although theserecentinvestigationshave obtainedsuccessfulresults, they fail to

provideaconsistentandgeneralframeworkfor micro-macroscopicmodelingof dendritic

solidification. For example,in DustinandKurz'smodel [33] of equiaxedgrowth andin

Flood andHunt'smodel[36] of columnarsolidification,thegrowthmodelfor thedendrite

tips is introducedattheexpenseof notconservingsoluteoutsideof thegrainenvelopeor at

thecolumnarfront [4]. Thesamepracticewasrepeatedby Kerr et al. [38]. A model that

16



not only conservessolutebut alsoincorporatesadendritetip growth modelin a rigorous

and consistent manner is due to Rappazand Thevoz [34]. Unfortunately, lengthy

calculationsarerequiredto obtainthe microscopicsoluteprofile outsideeachequiaxed

grain,which limits its utility in amacroscopicmodel.Althoughtheanalyticalversionof the

model [35] is suitablefor incorporationinto a macroscopicmodel,it is implied that the

averageconcentrationof the liquid outsideof thegrainremainsat its initial value,which

may notbevalid in somecases(e.g.,in thepresenceof macrosegregation).Finally, none

of the previously mentionedmicro-macroscopicmodelsaccountsfor finite-rate solute

diffusion in thesolidonamicroscopicscale.

More recently,WangandBeckermann[24, 39-41]developedaunifiedmodelfor both

equiaxedandcolumnardendriticsolidification,thatisbasedonamultiphaseapproachand

volume averaging.The basicmodelingapproachis introducedin the nextsubsections,

while moredetailsandapplicationsarediscussedin Sections4 and5.
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3.1 Muitiphase Approach

Consider a small volume element that contains several equiaxed or columnar dendritic

crystals, as schematically illustrated in Fig.9. An interfacial scale (having the unit of length)

is defined as the ratio of the volume of the structure to the interfacial area, so that two

different interfacial length scales can be distinguished in Fig.9. In the equiaxed case, the

solid crystal and the interdendritic liquid share a common interfacial length scale of 10 -6 to

10 -5 m, whereas the interface between the liquid outside the grains and the interdendritic

liquid has a larger length scale (of the order of 10 -4 to 10 -3 m). The same is true for the

columnar case, if one notes the difference between the primary and higher-order arm

spacings (see Fig.9b). The size of the volume element is chosen such that it is much larger

than all interfacial length scales, but small compared to the system scale (of the order of

10-1 to 100 m). Hence, a proper volume element could have a radius between 10 -3 and 10 -2

m. A volume element of this size is what all macroscopic models are actually based on.



The hypothetical interface between the interdendritic liquid and the liquid outside the

crystals is referred to as the dendrite envelope. The specification of this envelope is

somewhat subjective. However, a reasonable choice appears to be a smooth surface

connecting the primary and secondary dendrite arm tips, as shown by the interrupted line in

Fig.9. More details on the envelope topology can be found below.

Based on the above discussion, the volume element can now be considered to consist

of three different phases: the solid phase and the two liquid phases. The two liquid phases

separated by the dendrite envelope are distinguished by their different interfacial length

scales. This multiphase approach to a heterogeneous system is realistic since a fluid within

a structure of a larger scale really could have different macroscopic properties than the same

fluid in a smaller scale structure. It has long been recognized that the effective transport

properties of a fluid within a microstructure are not only dependent on its physical

properties, but also on the geometry of the structure [42-44].

In the multiphase approach, separate macroscopic conservation equations are

formulated for each phase. These macroscopic equations are linked through interfacial

transfer terms, which reflect the microscopic transport phenomena present at the interfaces.

The new interface between the two liquid phases (i.e., the envelope), thus, provides an

opportunity to incorporate additional microscopic phenomena in the model and transmit

information from the two different length scales into the macroscopic equations. The

macroscopic conservation equations are derived using the volume averaging technique,

which is described next.

18

3.2 Volume Averaging

Volume averaging has been a popular technique to derive macroscopic conservation

equations for multiphase transport phenomena with and without phase change. In its

application to solidification, a number of advantages have been pointed out [31 ]. Volume

averaging shows how the various terms in the macroscopic equations arise and how the



resultingmacroscopicvariablesarerelatedto thecorrespondingmicroscopicones.This

givesconsiderableinsightinto theformulationof constitutiverelationsfor theincorporation

of the microscopicphenomena.In this work on heterogeneoussolidification systems,

volumeaveragingis alsoattractivebecauseit showshowphysicalphenomenaoccurringon

onelengthscalearelinkedto thoseonanotherscalein amacroscopicdescription.

The averagingvolume,Vo, is shownin Fig.9.Rigorously,thespatialsmoothingof a

physical property belongingto the smallerscalephaseover the averagingvolume, Vo,

requiresthe knowledgeof thetransportequationsfirst averagedover a smallervolume.

Hence, in order to develop a macroscopicequationfor the smaller scalephasein a

heterogeneoussystem,basedon thevolumeVo,themicroscopicorpoint equation must be

spatially averaged successively over two averaging volumes of different size. This is the

basic idea underlying the so-called dual-scale volume averaging technique that was recently

developed by Wang and Beckermann [45]. However, the averaging theorems established

for that technique reduce identically to those in the conventional volume averaging method,

if it is assumed that the smaller averaging volume is spatially independent (but it can be time

dependent) inside the larger volume, Vo. Therefore, for the sake of simplicity, the

conventional volume averaging method is employed here, and each fluid having a distinct

length scale is viewed as a separate phase. Since the details of the method have been well

documented [46-49], only the averaging theorems are provided in the following:

_)_Pk._ O<_Fk > 1 fA _kw.ndA<-3i--" = _ Vo k
(1)

1 fA WkndA<V_k> --V<kIJk> + _o k
(2)

where the avcragingoperatorand theintrinsicvolume averagearcdefined,respectively,as

V-_,I., Xk_kdV (3)<qJk >
v/V O
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<_k>k = _t_t.]..Xk_PkdV (4)
,,jv o

with Xk denoting a phase function,equal tounityinphase k and zeroelsewhere,and Vk is

the volume of phase k inVo.

The factorn inEqs.(1)and (2)denotesthe outwardlydirectedunitvectornormal toan

interface,and w isthe velocityof theinterface.Note thatAk standsforthe totalinterracial

areaof thek-phase adjacenttoallotherphasesj;i.e.,

Ak = Z Akj (5)

j,j#k

For Wk=l, we obtainfrom Eq.(3)the definitionofthe volume fraction,Ek,as

_k = Vk/Vo (6)

In addition, it follows that

_ek = 1 (7)

and

<riSk> = 13k<Pk >k (8)

Furthermore, the fluctuating component of tFk can be defined as

A

tIJk= tlJk-<_'IJk>k (9)
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3.3 Macroscopic Equations

The microscopic (point) equations governing mass, momentum, energy, and species

conservation within a phase k are summarized in the first colunm of Table 1. Through

integration over Vo, and making use of Eqs.(1) and (2), the corresponding macroscopic

equations and interfacial balances can be derived. The details of the derivations have been

well documented [8, 46-50], and only the final, simplified result is shown in Table 1. All

interfacial integrals are already modeled using well-accepted basic constitutive relations

(e.g., see [31]). The overbar denotes interfacial quantities. The volume-averaged diffusive



fluxes and the shear stress may be modeled by introducing effective (macroscopic)

diffusion coefficients and viscosities, which depend on the microstructure, and the

fluctuating components of the thermophysical properties may be neglected (see below). The

dispersive fluxes are left unmodeled in the averaged equations.

At this point, the macroscopic equations in Table 1 are valid for almost any multiphase

system. The adaptation to alloy solidification requires careful specification of the interfacial

area relations, interfacial transport coefficients, and other supplementary relations, in

accordance with the multi-phase/-scale approach outlined in Section 3.1. This is illustrated

in Sections 4 and 5 for diffusion-controlled and convection-dominated dendritic alloy

solidification, respectively.
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4. DIFFUSIONAL TRANSPORT IN DENDRITIC ALLOY

SOLIDIFICATION

The vast majority of alloy solidification models neglects melt convection and solid

phase transport. Such a simplification is quite instructive from a fundamental point of view,

but cannot be justified for most real solidification processes. Nonetheless, this section

attempts to provide a unified overview of present diffusional theories of dendritic alloy

solidification.
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4.1 Reduced Macroscopic Equations

With Vk=0, the averaged equations of Table 1 reduce to relatively simple heat and

solute diffusion equations for each phase k together with the mass conservation equations

and the interracial mass, energy, and solute balances. Before embarking on their solution, it

is important to examine the time (or length) scales for heat and solute diffusion. The Lewis

number (i.e., the ratio of the thermal to the mass diffusivity) of metal alloys in the liquid

state is of the order of 104. In the solid state it is even higher. A straightforward analysis

then shows that, for common solidification and cooling rates, (i) the phases in the

averaging volume can be assumed to be in thermal equilibrium so that the averaging volume

is isothermal, and (ii) solute diffusion on the macroscopic scale does not need to be

considered. Under the first assumption, the energy equations for each phase can be added

up and a single heat conduction equation can be written for the mixture temperature:

/)T
pc -_- V.(kVT) + pAh 3es= Ot (10)

where pc and k are the mixture thermal capacitance and effective thermal conductivity,

respectively. The last term on the RHS of Eq.(10) arises from converting the phase

enthalpies to temperature and accounts for the latent heat release in the mushy zone due to

an increase in the solid volume fraction, Es. Equation (10) is valid for all phase volume



fractions and reduces to the correct limits in the pure solid and liquid regions. The validity

of Eq.(10) is examined in more detail in [8].

With the neglect of macroscopic solute diffusion, the mass and solute conservation

equations for a phase k reduce to

(EkPl0 = _ Fkj = E SkjPk_-nkj
(j,j_k) (j,j_k)

(11)

_t(F-'kPk<Ck>k) = Y. Jkj = X (J_j +JJj)

(j, j_k) (j, j_ek)

= X [FkjC--kj + SkjPkDk (Ckj- <Ck>k)] (12)
(j, j#k) lkj

and the interfacial balances

Fkj+Fjk=O and Jkj+Jjk=O (13)

where Wnkj and Skj (=Akj/Vo) are the normal velocity and the area concentration,

respectively, of the interface between phases k and j. Other symbols are defined in the

Nomenclature.

In accordance with the multiphase approach for dendritic solidification outlined in

Section 3, we will consider a three-phase system consisting of the solid (k=s), the

interdendritic liquid (k--d), and the extradendritic liquid outside the dendrite envelope (k=l),

so that es + ed + El = 1. It is further assumed that according to Fig.9 the dendrite tips have

only pointwise contact with the dendrite envelope. Hence,

Ssd = Sds = Ss; Sdl = Sld =Se and Ssl = Sis = 0

Wnsd = -Wnds = Wns ; Wndl = -Wnld = Wne (14)

These relations imply that there exists no direct coupling between phases s and 1, while

phase d interacts with both phases s and 1. At the d-1 interface, phases d and I are actually

the same liquid, so that

C_II = _21d= _ (15)
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wheresubscripte in the abovetwo equationsdenotesthedendriteenvelope.At the s-d

interfacelocal thermodynamicequilibriumprevails,andthelinearizedliquidusandsolidus

linesof theequilibriumphasediagram(Fig.lc) give thefollowing

_2sd/(2ds=_; (2ds-T-Tmm! (16)

Assuming further that the densitiesof the liquid and solid phasesare equal and

constant,themassconservationequationscanbewrittenas
des
dt - SsWns (17)

dd-(t13s+ed)=d131- _ = Sewne (18)

and,afterafew manipulations[39], thesolutebalancesbecome

phase s

_(es<Cs >s) - 0es SoDo

_t - Csd -_ + ff (Csd - <Cs >s) (19)

phase d

_(ed<Cd >d) 7, ,3es _ _:d + SsDI <Cd>d) + _ (Ce (20)Ot - (_--e- t..-ds)-_ + e-_ _ (CMs- - <Cd >d)

phase I

_(EI<CI >1) 7-, _£1
_t - tSe-_---+ _ (C--e- <CI >1) (21 )

s-d interface

3es SsDI
_D (Csd <Cs >s) (22)(Cd -f ,d = (Cd -<Cd>d) +

d-I interface (dendrite envelope)

1< 1
Ce = lid C 1> 1 + G <Cd>d

1 1 (23)

The meanings of the various solute diffusion lengths, lkj, in the present three-phase system

are schematically illustrated in Fig. 10 and further discussed in Section 4.3. Geometrical
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relations for the interfacial area concentrations, Ss and Se, are derived in Section 4.2.

Because the normal envelope velocity, _'e, does not appear in Eq.(23) (since _2dl = _21d),

the kinetics of the dendrite envelope need to be prescribed separately, which is shown in

Section 4.4. Otherwise, the above equations constitute a full system for the unknown

volume fractions, concentrations, and temperature, if supplemented by proper initial and

boundary conditions.

It is noteworthy that all model equations have clear physical interpretations. For

example, Eq.(19) simply states that the change in mass of solute in the solid results from

the combined contributions of movement of the solid/liquid interface and solute diffusion

across the interface. The solute balance at the s-d interface, Eq.(22), implies that the solute

rejected during phase change is diffused into both the solid and interdendritic liquid phases.

Finally, Eq.(23) indicates that the concentration at the envelope interface, _2e, is a

diffusion-resistance weighted mean of the averaged concentrations in the adjacent phases,

since no phase change occurs at this interface.

Another salient feature of the present model is that it provides the same set of

conservation equations for both equiaxed and columnar dendritic solidification. In other

words, the model represents a unified theoretical framework for both modes of

solidification, while leaving descriptions of the different physical characteristics of each

mode to supplementary relations, as shown next.
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4.2 Morphological Relations

The interfacial area concentrations, Ss and Se, characterize the topology of the

interfacial structures, and are thus related to complex microscopic phenomena, such as the

growth of various solid microstructures, impingement of interfaces and coarsening of

dendrite arms. The area concentrations play important roles in the modeling of the

interfacial transfer terms and need to be modeled through supplementary relations, which

can be developed from either experiments or certain theoretical considerations. In fact, it



hasrecently beenproposedto basemicro-macroscopicmodelsdirectly on the specific

surfacearea,Sv [51].Theinverseof thespecificsurfaceareais amoreaccuratemeasureof

the lengthscaleof amicrostructurethanthetraditionallyemployedspacingsandcaneasily

bemeasured.Theinterfacialareaconcentration,S, is relatedto Svby S= Sv(1-e),where

is thevolumefractionof themicrostructureunderconsideration.Hence,oncerelationsfor

Svbecomeavailable,theycanbeusedin thepresentmodel.

In thefollowing, amoretraditionalapproachis taken,andanattemptismadeto relate

the interfacial areaconcentrationsto certaindendritespacings,thenuclei density, time

(throughcoarsening),andthevariousvolumefractions(whicharealsofunctionsof time).

In the presentmodel, different length scaleshavebeendistinguishedand, thus, it is

possibleto relatethe interfacialareaconcentrationsto suchmetallurgicalparameters.This

alsoenablestheincorporationof microstructuralphenomena(e.g.,coarsening)that occur

only ona particularlengthscale[52].Thismatteris obscuredin regulartwo-phasemodels

throughtheuseof meangeometricalparametersfor theaveragingvolume[31].
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4.2.1 Solid/Liquid Interface. The areaconcentrationof the interface betweenthe

solid andtheinterdendriticliquid canbemodeledby assuminga simpleone-dimensional

plate-likegeometryof thesecondarydendritearmsasshownin Fig.11.This is applicable

to bothequiaxedandcolumnarstructuresandis traditionallyadoptedin mostmicroscopic

analyses.For suchageometry,it is readilyshownthat
Es_L2

d s -
1 -El

(24)

and
2

Ss - (25)
X.2

Substituting Eq.(24) into Eq.(25), we obtain a relation between Ss and the mean

characteristic length (diameter) as

2es
S s -

(1-el)ds
(26)



It is interestingto seethatthisresultmatcheswell with thegeneralexpressionsobtainedby

DeHoff andRhines[53] andBird etal. [54].Thenumericalfactorcanbeadjustedfor other

choicesof thegeometry.In addition,wenotethatEq.(25)isreadyfor theincorporationof

thecoarseningeffect.Forexample,byusingthecoarseninglawestablishedby Kattamis et

al. [55]:

Eq.(25) gives

13t1/3 (27)_.2 = _ a

Ss - t- 1/3 (28)a

where ta is the local 'aging' time. This result is consistent with the coarsening experiments

conducted by Marsh and Glicksman [56] at a constant solid fraction.

Note that due to the assumption of a one-dimensional plate-like geometry for the

solid/liquid interface, the interracial area concentration, Ss, is not an explicit function of the

solid volume fraction (but Sv is; see above). This may not be a good approximation during

the initial and final stages of solidification, when the interface experiences qualitative

changes in its topology. This problem can be overcome by using the correction factor for

the interracial area due to Avrami [57] to account for impingement of interfaces or the

empirical relation proposed by Speich and Fisher [58].
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4.2.2 Dendrite Envelope. The area concentration of the dendrite envelope is modeled

by introducing an envelope shape factor defined as

= Aequivalent/Aactual (29)

By equivalent we mean an equivalent sphere or cylinder of the same volume as the actual

crystal envelope. Equiaxed crystal envelopes are most appropriately described by

equivalent spheres, while equivalent cylinders are chosen for the columnar case. The shape

factors are schematically illustrated in Figs.12a and 12b. A shape factor always lies

between zero and unity since a sphere and a cylinder have the least possible surface area for

three-dimensional and axisymmetric bodies, respectively; however, for envelope shapes



similar to theonesshownin Fig.12,_eis relativelycloseto unity [59]. If theenvelopeis

shapepreservingduringgrowth,_ecanbetakenasaconstant.

A. Equiaxed Growth

For equiaxed growth, the diameter of the equivalent sphere, de, can be related to the

number of crystals per unit volume, n, as

= _6(1-E1)/I/3  30)

Then, the following relation for Se can be written:

Se = _--(36r01/3 n 1/3 (l_el) 2/3 (31)

The number of equiaxed crystals per unit volume, n, must be calculated from a nucleation

model, according to
an
bt - fi (32)

where n is the nucleation rate. In the present context of diffusion-contxolled solidification,

the source of equiaxed grains would be solely due to heterogeneous nucleation. The basic

theory of heterogeneous nucleation has been outlined by Turnbull [60]. As reviewed in

Rappaz [4]

= Kl(no - n)exP[T -K2

where no is the initial nucleation site density, AT is the undercooling, KI is a constant

related to the collision frequency of atoms of the melt with the nucleation sites of the

heterogeneous particles, and K2 is related to the interracial energy balance between the

nucleus, the liquid, and the foreign substrate on which nucleation occurs [4].

This nucleation theory has been shown to predict incorrect equiaxed grain sizes (see

[4]) and more pragmatic approaches have been developed. Among them are the statistically

based continuous nucleation theory due to Thevoz et al. [611 and the instantaneous

nucleation concept due to Stefanescu et al. [621. The latter can be simply written as

fl = no 5(T - TN) (34)
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where TN is the critical nucleationtemperatureand 8 is theDirac delta function. The

number of nucleationsites, no, must in turn be calculatedfrom anempirical relation

reflectingtheinfluenceof thecoolingrateontheactivityof theforeignsubstrates.All of the

aboveapproachesrequirethemeasurementof thegraindensityin asolidified meltsample

for calibration.In otherwords,theyarenot truly predictive.Othercomplicationsarisein

thepresenceof convection,whichis discussedin moredetailin Section5.

B. Columnar Growth

By assuming a square pattern of the columnar dendrites on a transverse cross-section,

as shown in Fig. 12b, the equivalent diameter, de, can be related to the familiar primary arm

spacing, _,1 , such that

(35)

For the equivalent cylinders assumed in columnar growth, the envelope area concentration

becomes

Se = !(4_)l/2(1-el) l/2-J--1 (36)
_e _-1

It should be mentioned that Eqs.(35) and (36) are also valid for other arrangements of the

dendrites, except for a slight change in the numerical factor.

The primary arm spacing, _l, depends mainly on Vt and G, the columnar front

velocity and the temperature gradient. Hunt [63] developed a theory to predict the primary

dendrite ann spacing:

_,1 = {64I"Dlml(1-_:)Co }1/4G-1/2V il/4 (37)

Other theories result in essentially the same equation except for a different numerical

constant ] 18].

By comparing Eq.(31) with Eq.(36), it is apparent that the number density of equiaxed

crystals, n, can equivalently be viewed as the number density of primary arms in columnar
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solidification, that is nl/3 ~I/'LI. Furthermore, Eqs.(31) and (36) reveal the following

important parametric relation:

Se - n 1/3 or 1/'L1 (38)

The final equivalent radius (Rff-de/2) of a dendrite, which is useful in the calculation of

the diffusion lengths, can be obtained from Eq.(30) or (35) by taking el=0. Similar to the

solid/liquid interface, the envelope area concentrations expressed by Eqs.(31) and (36)

need to be modified during the initial and final stages of solidification. In particular, Se

should be equal to zero for el--0.
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4.3 Diffusion Lengths

The diffusion lengths characterize the magnitude of the diffusive flux between an

interface and the adjacent phase. In view of Fig. 10, they can be defined as

/kj = Ckj - <Ck >k
/)Ck (39)

- -fin--kj

where the denominator represents the mean concentration gradient in phase k normal to the

kj interface. The diffusion length is generally a complicated function of the micro-scale

phenomena. Several simple analytical results are described below. Here, it is important to

realize that analytical results are desirable so as to minimize the numerical effort. In the

presence of convection, the diffusion lengths are closely related to the drag, and heat and

mass transfer coefficients at the interfaces within Vo, which is discussed in more d.etail in

Section 5.

4.3.1 Solid Region. The modeling of the diffusion length in the solid is important for

the prediction of finite-rate solute diffusion and, hence, microsegregation in a solidified

alloy. For dendritic solidification, Ohnaka [64] has presented an elegant model that gives

good agreement with experimental data and fits well into the framework of the present



formulation. Following his procedure, the present derivation is based on a 1-D plate-like

dendrite arm geometry, as shown in Fig.11. A parabolic concentration distribution is

assumed in the solid phase. The centerline of the dendrite is taken to be a line of symmetry

and the concentration at the solid/liquid interface is given by the phase diagram. Then, with

the definition of the diffusion length, Eq.(39), it is readily shown that [39]

lsd = ds/6 (40)

The mean diameter of the solid phase, ds, can be related to the secondary dendrite arm

spacing, k2, and the volume fraction es [see Eq.(24)]. The derivation can be modified for

other dendrite arm geometries such as cylinders and spheres. The same result is obtained

except for a change in the numerical factor of the order of unity.
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4.3.2 Interdendritic Liquid. For a dendrite envelope closely encompassing the

dendrite arms, a similar analysis as that for the solid yields that the diffusion lengths in the

interdendritic liquid, lds and/dl, are proportional to the characteristic interdendritic spacing,

i.e.,

lds and ldl - _.2 (41)

Together with Eq.(40), this implies that the diffusion lengths in the interdendritic liquid and

the solid are of the same order of magnitude. However, because the liquid mass diffusivity

is typically several orders of magnitude larger than that of the solid, it is usually safe to

assume that the interdendritic liquid is solutally well-mixed and, thus, it is not necessary to

accurately model finite-rate solute diffusion in the interdendritic liquid.

4.3.3 Extradendritic Liquid. In contrast, one has to carefully model the diffusion

length in the liquid outside the dendrite envelope, in order to account for solutal

undercooling of the liquid ahead of the dendrite tips. This can be done by assuming that (i)

the envelope is spherical with an equivalent radius Re and (ii) solute diffusion is one-



dimensional and quasi-steadyin the moving coordinatesystemfixed to the envelope

surface,asillustratedin Fig.13.

By solving the differential equationgoverningsolutediffusion in theextradendritic

liquid, it canbe shownthat theconcentrationprofile is of an exponentialnature [39].

Substitutionof theprofile into thedefinitionof thediffusionlengthyields
1

lid/Re = ---l(1pe - El3exp[-Pe(1-el)l/3] f.) (1__1)1/3 x2exp[pe(1-El)2/3]dx)x (42)

where x is a dummy variable of integration and the Peclet number, Pe, is based on the final

equivalent radius, Rf, of the dendrite envelope

Pe =
DI (43)

A similar expression for the liquid diffusion length results for a cylindrical coordinate

system, which is applicable to the columnar case [39].

It is worth noting that the diffusion length given by Eq.(42) has the property that

lid -<_ (44)
wne

The equality sign in Eq.(44) corresponds exactly to the analytical result of Rappaz and

Thevoz [35]. More recent analyses of a similar nature have been presented by Nastac and

Stefanescu [65].
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4.4 Growth Kinetics of the Dendrite Envelope

As shown in Fig.9, the envelope is a smooth surface connecting both the primary and

secondary dendrite arm tips. Therefore, the envelope velocity, _'ne, can be taken to be

equal to some mean tip velocity. Generally, each tip moves at a different speed depending

on the local solutal undercooling in the extradendritic liquid adjacent to the tip. In particular,

there may be considerable differences in the speeds of the primary and secondary dendrite

arm tips. In spite of this complex situation, it may be assumed that the mean dendrite tip



velocity and,hence,theenvelopevelocitycanbeuniquelyrelatedto theaveragesolutal

undercoolingin theextradendriticliquid, i.e.,_ - <El >1. The irregular topography of the

envelope caused by the different speeds of the dendrite tips is accounted for through the use

of the envelope shape factor as described in Section 4.2.2.

Numerous studies have been performed to establish a relation between the dendrite tip

undercooling and its growth velocity, and the detailed derivations can be found in [ 18].

Physically, the growth model is obtained by considering two phenomena: solute transport

near the tip and tip stability. Assuming no back diffusion in the solid and using the

common marginal stability condition for tip growth proposed by Lipton et al. [66], it can be

shown that

- DIm(K:- 1)Ce Pe_
Wne - re2----_-

(45)

where the tip Peclet number, Pet, is related the dimensionless solutal undercooling, f_:

_2- Ce-<CI >1
C-.e(1-_:) (46)

via the solution of the solute diffusion problem near the tip. For diffusion-dominated

growth, the exact solution, called the Ivantsov function, can be written as

Iv(Pet) = Pet exp(Pet)El(Pet) = f2 (47)

where El(Pet) is the exponential integral function. Combining Eqs.(45) and (47) yields a

growth model for diffusion-dominated solidification.

The inclusion of a dendrite tip growth law has an important implication for the present

multiphase model. The interface between the two liquid phases (i.e., the envelope) is no

longer hypothetical but mathematically characterized by the growth law. Hence, it is as

meaningful as the solid-liquid interface, which is mathematically represented by equilibrium

conditions.
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4.5 Limiting Cases and Comparisons

The previous subsections constitute the complete diffusional model for dendritic alloy

solidification. An energy equation is used to calculate the temperature evolution and

distribution and the solute diffusion equations can be integrated to obtain the solid fraction

evolution, which then feeds back into the latent heat term. Because the solute diffusion

model rests on numerous assumptions, it is necessary to first validate the predictions for

certain limiting cases, which is the subject of this subsection. Details of the comparisons

can be found in [40].

As reviewed by Rappaz [4], previous solute diffusion models for dendritic

solidification can be classified as follows: (i) Equilibrium models which do not consider

nucleation and undercooling in the liquid; (ii) Models for columnar growth which

incorporate dendrite tip undercooling; (iii) Models for equiaxed growth focusing on

coupling the growth kinetics of dendrite tips to the evolution of an equiaxed grain. The

following subsections are divided according to this classification.
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4.5.1 Complete Solute Mixing in the Liquid. This category of solute diffusion

models essentially aims at investigating the effects of back diffusion in the solid. By

neglecting dendrite tip undercooling, namely assuming complete solute mixing in the inter-

and extradendritic liquid, the only solute diffusion equation of interest is the one for the

solid, Eq.(40). Further restricting attention to a locally parabolic solidification rate, i.e.,

C3es 1

Es _ - 2tf (48)

where tf is the local solidification time, the present model admits a closed-form analytical

solution [40]

Ce 6o_(1 - Es)( 1+6°0_-1 es
j" E6_- 1(I_E)-( l+6ct)_: dE

Co - es6Ct o
(49)

where



4Dstf
o_- 2 (50)

_'2

is thetraditionaldiffusion Fouriernumberbasedon thesecondaryarmspacingandCois

the initial composition. For at-->ooandat--*0, the well-known Lever rule and Scheil

equation,respectively,canbe recovered.For anintermediateat,Fig.14comparesEq.(49)

with otheravailablemicrosegregationmodels.It canbeseenthatthepresentmodelagrees

betterwith Kobayashi'sexactsolution[67] thantheotheranalyticalmodelsdueto Brody

andFlemings[68], ClyneandKurz [69], andOhnaka[64]. Availablein the literatureare

alsoanumberof numericalmodelsthatcanhandlevariablethermophysicalpropertiesand

coarsening(see[70]).
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4.5.2 Columnar Growth with Dendrite Tip Undercooling. At intermediate and

high cooling rates, diffusion in the solid is found to be negligible. However, another effect

begins to influence the relation between the solid fraction and temperature: the dendrite tip

temperature falls significantly below the equilibrium liquidus temperature. Some recent

theoretical studies of the tip undercooling effect have been reported by Flood and Hunt

[36], Giovanola and Kurz [37] for an Ag-Cu alloy, and by Flemings [71] for an A1-Cu

alloy. The latter two studies are based on the "patching" method due to Giovanola and Kurz

[37]. This model divides the mushy zone into two regions, with nonequilibrium growth

allowed only in the tip region and a state of complete solute mixing in the liquid assumed in

the other region. Then, a curve-fitted polynomial and the Scheil equation are utilized for the

solid fraction profiles in the two regions, respectively. The KGT model [72] is used for the

dendrite tip growth and back diffusion in the solid is neglected. Without presenting the

details of the calculations [40], the present model is compared in the following to these and

other studies of columnar solidification. The interdendritic liquid is assumed to be solutally

well mixed.



To examine the sole effect of dendrite tip undercooling, calculations have been carried

out for two cooling rates of i" = 103 and 106 K/s and by setting Ds=0 in the model

equations. The predicted temperature vs. solid fraction curves are plotted in Fig. 15 together

with Flemings' results. It can be seen that the two predictions basically produce the same

trend. The temperature undergoes little change during the initial long stage of solidification,

and significantly decreases only during the last short period of solidification. The other

consequence of dendrite tip undercooling is a decrease in the fraction eutectic. It should be

realized that, opposed to the patching method of Giovanola and Kurz [37], a single set of

equations is used in the present model throughout the entire mushy region.

Another numerical study using the present model is conducted for an Ag-15wt% Cu

alloy, again assuming negligible back diffusion in the solid. Calculations have been carried

out using the data from the experiment of Bendersky and Boettinger [73]. The predicted

microsegregation profile is plotted in Fig. 16, together with Giovanola and Kurz's result

[37] as well as the experimental data measured by Bendersky and Boettinger [73]. It can be

seen that all three results are in good agreement, thus validating the present model in

accounting for the influence of dendrite tip undercooling. Slight differences between the

present results and those from the Giovanola and Kurz model can be observed in both

Figs.15 and 16. They can be attributed to the simplified treatment of the dendrite

morphology in Giovanola and Kurz' patching method [37]. In fact, it can be argued that the

present predictions in Fig. 16 are in somewhat better agreement with the experimental data.

In order to predict microsegregation over a wide range of cooling rates, however, the

effects of back diffusion in the solid and dendrite tip undercooling need to be taken into

account simultaneously. Recently, Sarreal and Abbaschian [74] presented a set of

experimental data for an AI-4.9wt% Cu alloy in order to demonstrate the influence of the

cooling rate on microsegregation. Interestingly, they found that the eutectic fraction first

increases as the cooling rate rises up to 187 K/s and then decreases with increasing cooling

rate. This behavior cannot be captured by a solute diffusion model that considers either
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solid diffusion only or dendritetip undercoolingalone,as indicatedin BattleandPehlke

[75]. Sincethe presentmodel includesboth of the abovementionedfactors,it can be

expectedto beanappropriatetheoreticaltool for explainingtheexperimentalobservation.

Severalnumericalsimulationshavebeenperformedfor solidificationof anA1-4.9wt%Cu

alloy at the cooling rates and growth velocities present in the experiments. In the

calculations,eutectic undercoolingwasneglectedand constantalloy propertieswere

assumed.Figure 17comparesthepredictionswith theexperimentalresultsof Sarrealand

Abbaschian[74] for theeutecticfractionasa function of the coolingrate.In the figure,

EEmaxis thetheoreticalmaximumeutecticfractionascomputedfromtheScheilequation.It

is found thattheagreementbetweenthemodelpredictionsandtheexperimentalresultsis

fairly good, with therelativeerror rangingfrom 1.73%to 11.5%.By includingeutectic

undercoolingandvariablealloyproperties,RooszandExner[76] andVoller andSundarraj

[77] obtainedeven betteragreement.Nonetheless,the importantfact that the eutectic

fraction is reducedat a very highcooling rate is predictedby thepresentmodel.This is

known to bedue to theeffectof dendritetip undercoolingonmicrosegregation.At low

coolingrates,backdiffusionin thesolidcausesareductionin theeutecticfraction,whileat

high rates,dendritetip undercoolingtendsto decreasetheeutecticfraction.However,the

two effectsarenotadditive.At low coolingrates,theeffectof dendritetip undercooling

does not exist, while at very high cooling rates,diffusion in the solid phasebecomes

negligibledueto theshortdurationof thesolidificationprocess.
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4.5.3 Equiaxed Growth. The solute diffusion processes occurring in equiaxed

dendritic growth are even more difficult to model, mainly because an equiaxed dendrite is

not fully solid. Several approaches have been reported in the literature. Dustin and Kurz

[33] presumed that a mushy grain has a constant internal solid fraction. As already

mentioned, Rappaz and Thevoz [34,35] were the first to fully account for nucleation and

growth kinetics, and introduced the idea of a spherical grain envelope which separates the



inter-from theextra-dendriticliquids.Theinterdendriticliquid wasassumedto besolutally

well mixed,andthedynamicsof theenvelopeweredeterminedby thegrowthkineticsof

thedendritetips.Bothnumericalandanalyticalversionsof thissolutediffusionmodelwere

formulated.

In orderto validatethepresentmodelfor equiaxeddendriticgrowth,solidificationof an

AI-5wt% Si alloyhasbeensimulatedandcomparedwith theresultsof RappazandThevoz

[34].Again,the interdendriticliquid is assumedto besolutallywell mixed.Thesimulations

correspondto isothermalsolidification of a small sample,where the following energy

equationapplies:

A _,,des dT
qextVoo= pci" = p_n-_-+ pc dt (51)

A seriesof predictedcoolingcurvesfor acoolingrateof 45K/sandthreedifferentfinal

grain radii is comparedagainstthemoreexactsolutionof RappazandThevoz [34], as

shownin Fig.18.The latter wasobtainedby solving a microscopicpartial differential

equationfor solutediffusion in theextradendriticliquid by afinite differencetechnique.It

can beseenthat excellentagreementbetweenthe two predictionsexists, althoughthe

presentmodelutilizesthesimplerconceptof a diffusion lengthtogetherwith an integral

formulation.Thepredictedrecalescenceis typicalof equiaxedsolidification.Theincreasein

thetemperatureat latertimesisdueto thelatentheatreleasebeinglargerthantheexternal

cooling.RappazandThevoz[34] andThevozetal. [61] alsocomparetheirpredictionsto a

varietyof experiments,includingmultidimensionalcastings,andthereaderis referredto

theoriginal literaturefor amoredetaileddiscussion.

38

4.6 Application to the Prediction of the Columnar-to-Equiaxed Transition

(CET)

Only recently, efforts have been made to theoretically model the CET. Hunt [78] first

developed an analytical model by considering steady state columnar and equiaxed growth.



The modelqualitatively revealsthe influencesof alloy composition,nuclei densityand

cooling rate on the CET. Subsequently,Flood and Hunt [36] extendedthe work to

dynamicallymodeltheCETin aone-dimensionalingot.Theyincorporatedgrainnucleation

andgrowth principlesinto aheatflow calculation,andsimulatedtheCET asaStefan-like

discontinuity interface.Although theirwork significantlyadvancesthepredictionof the

CET, it suffersfrom severallimitations.First,soluteis not conservedin their model,as

noticed in a number of subsequentinvestigations [4,37]. This leads to erroneous

predictionsof thevolumefractionof equiaxedgrainswhosegrowthis mainlycontrolledby

constitutional undercooling, and therefore makesit impossible to capture the CET

accurately. Secondly, their model is a multi-domain formulation in which different

governingequationsareappliedto thecolumnarandequiaxedzones.Thesolutionof such

equationsrequiresexplicit trackingof theinterfaceseparatingthetwo zonesandtheuseof

appropriatematchingconditions betweenthe two regions. It is well known that great

difficulties areassociatedwith thenumericalimplementationof suchamodel,in particular

in multi-dimensionalsituations.

Othernumericalstudiesof predictingthegraingrowth andCET adoptacompletely

different approach,namelya probabilisticmethodbasedon theMonte-Carloprocedure.

Notablework includesthatby Brown andSpittle [79], Zhu andSmith[80], andRappaz

andGandin[81].Capableof producingcomputedtwo-dimensionalmicrostructureswhich

closely resemble thoseobservedin real micrographiccross-sections,thesemodels,

however, either lack a rigorous physical basisor invoke certain simplifications. For

example,thephysicalmechanismsof nucleationandgrowthof dendriticgrainshavenot

beenproperlyaccountedfor in the statisticalmodelsby Brown andSpittle [79] andZhu

and Smith [80]. A uniform temperaturefield hasbeenassumedandsolutediffusion not

consideredby RappazandGandin[81].

Comprehensiveexperimentson the CET have beenconductedby Weinberg and

coworkersin laboratoryingotscooledfrom belowfor variousSn-Pballoys[82] andanA1-
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3wt% Cu alloy [25]. The relationship between the casting parameters and the CET position

has been established for these alloys. However, no systematic comparisons between these

experiments and theory have been attempted so far [83].

In this section, selected results of a recent study by Wang and Beckermann [24] are

presented. All results shown are directly based on the multiphase/scale model of Sections

4.1 to 4.4. All thermophysical property data and other conditions can be found in the

original reference.
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4.6.1 System Description. The system investigated is shown in Fig.19 and consists,

in the most simple case, of a one-dimensional casting in which mixed columnar and

equiaxed growth occurs. The equiaxed grains compete with the advancing columnar grains;

when the equiaxed crystals are small, they are swallowed by the approaching columnar

front and transformed into columnar dendrites. Conversely, if the undercooled zone ahead

of the columnar front is relatively large and the density of crystals high, the equiaxed grains

may have enough time to reach a sufficiently high volume fraction to block the columnar

crystal growth. The latter case results in the CET in the final microstructure of a solidified

material. A criterion for the CET to occur was first proposed by Hunt [78] and later

confirmed by Brown and Spittle [79]. That is, the equiaxed grain volume fraction (Es+EcO

immediately ahead of the columnar front must exceed 0.49 to stop the columnar growth.

The boundary and initial conditions for the energy equation, Eq.(10), and the solute

diffusion model, Eqs.(19-22), can be summarized as follows:

k_gT- _- = h(T- Ta) (at the lower wall); _T_x = 0 (at the upper wall) (52)

and

at t = 0, T = To, Ce = <Cl >! = Co, <Cs >s = i(C o, Es = Eso, Ed =0, el = 1-eso (53)

where h is the heat transfer coefficient at the chill wall. The initial temperature, To, is not

necessarily equal to the liquidus temperature corresponding to the initial concentration,



TL(Co), andtheir difference,ATo = To - TL(Co), represents the pouring superheat. The

initial solid fraction eso is a small positive number to account for the finite size of the nuclei

present in the liquid melt. In the numerical simulations presented below, Eso was chosen to

be small enough that the later predictions are insensitive to Eso.

As in the comparisons presented in Section 4.5, the interdendritic liquid is assumed to

be solutally well mixed, resulting in certain simplifications in the model equations [24].

Back diffusion in the solid is also neglected (i.e., Ds=0).
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4.6.2 Numerical Results. Because all the macroscopic diffusion equations are equally

valid for columnar and equiaxed growth, a fixed grid can be utilized and no internal

matching conditions between the various regions need to be considered. Other numerical

procedures include a two-time-step scheme, inspired by Thevoz et al. [61], and a special

columnar front tracking algorithm [24].

A representative one-dimensional simulation was first carded out for an A1-3wt% Cu

alloy in a one-dimensional mold of 100mm length, and the results are presented in Figs.20

and 21. The conditions are: h=65 W/m2K, n=105 m -3 and AT o = 20 K.

Figure 20a shows the calculated cooling curves at five locations between x/L=0.025

and 0.825 with an interval of 0.2. Negligible bouncing or reheating effects are seen in the

cooling curves near the recalescence stage (see the inset of Fig.20a), although a relatively

coarse grid was used. Significant recalescence is only observed in the first curve for the

location nearest to the chill wall, whereas the other curves exhibit thermal plateaus. It can

be concluded that for the mixed mode of solidification, recalescence is less pronounced

than in purely equiaxed solidification [61]. This is because the cooling curve for mixed

growth embodies features of columnar solidification, namely a temperature plateau in the

cooling curve [36]. The fact that the cooling curves for various modes of solidification are

distinctive in shape has been utilized by Lipton et al. [84] for in situ measurements of the

CET positions in castings.



The computed solid and grain fractions are displayed in Fig.20b at the same locations

as the cooling curves. Again, the grain fraction is defined as the sum of the solid and

interdendritic liquid volume fractions. This figure clearly shows that the two quantities do

evolve at disparate rates, as mentioned earlier. Hence, a two-time step scheme is necessary

for accurate calculations of both macro- and microscopic features of solidification. In

addition, it is noticed from Fig.20b that the grain fraction at some locations does not reach

the maximum value of unity. This is because complete mixing of solute in the extradendritic

region is reached before the grain envelopes impinge. In other words, the dendrite tips do

not advance further, because undercooling at the tips is no longer significant. The

remaining liquid in the extradendritic region is ultimately solidified during the eutectic

reaction.

The evolution of the different regions in the ingot is depicted in Fig.21, where the

dashed line denotes the liquidus isotherm corresponding to the initial alloy concentration,

and the solid line stands for the CET interface which divides the mushy zone into the

columnar and equiaxed regions. The final CET position corresponds to the vertical part of

the solid line. Hence, the CET occurs about 650 seconds after the initiation of cooling of

the ingot.

Selected two-dimensional simulations were also performed for the AI-3wt% Cu alloy.

Figures 22a and 22b depict the evolution of the interface between the columnar and

equiaxed zones in 100× 100mm square and 50xl00mm rectangular castings, respectively.

The left and bottom walls were cooled with a heat transfer coefficient of 65 W/m2K., while

the upper and right boundaries were insulated to represent symmetry conditions. Other

conditions are the same as in the one-dimensional simulation. The predicted CET interfaces

are quite similar to the ones observed in the experiments of Brown and Spittle [85] for the

square geometry, and to the simulation results obtained by Zhu and Smith [80] for the

rectangular geomeu'y.
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4.6.3 Experimental Verification. This section presents some validation of the

present model using the experimental data of Weinberg and coworkers for both Sn-Pb [82]

and A1-Cu [25] alloys. In Weinberg's experiments, the various alloys were poured into a

100ram long cylindrical mold and solidified vertically upward from a water-cooled copper

chill at the bottom. One-dimensional solidification results by avoiding lateral heat losses.

The CET position was observed and measured by sectioning the solidified ingots along the

vertical center plane, and polishing and etching the sectioned surface. Since for both alloys

the solute-rich interdendritic liquid has a higher density than the overlying alloy melt and

the axial temperature gradients are stable, melt convection due to buoyancy forces is

minimal and, thus, the CET data are well suited for comparison with the present model

where convection is omitted. Some uncertainties remain, however, with respect to the

effects of sedimentation or floating of equiaxed grains due to the density difference between

the solid and liquid phases. The experiments covered a wide range of chill heat transfer

coefficients, pouring superheats, and alloy compositions.

In the absence of a reliable nucleation model, a parametric study was lust performed to

investigate the effect of the equiaxed nuclei density on the CET. Figure 23 compares the

model predictions to the A1-3wt% Cu alloy data of Ziv and Weinberg [25]. It can be seen

that for all chill heat transfer coefficients the predicted CET positions agree fairly well with

the experimental data for a nuclei density in the equiaxed zone of 105 m -3. This value was

thus used in all comparisons with the AI-3wt% Cu experiments. A similar procedure for the

Pb-Sn alloy experiments of Mahapatra and Weinberg [82] showed that a singlenuclei

density of 107 m -3 resulted in good overall agreement with all 24 experimental runs. The

value of n=107 m °3 (which corresponds to a final equiaxed grain size of about 2.8 mm) is

of a reasonable magnitude, although some variations can be expected for the different

cases. A summary of all comparisons is presented in Fig.24.

Returning to Figure 23, one can also examine the effect of inoculation on the CET. In

the inoculation experiments with h=50 W/m2K [25], it was found that the equiaxed grain
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sizedecreasedfrom 5.4to 1mmby adding172ppmof TiB2 to theliquid melt. The lmm

grain sizecorrespondsto anequiaxednuclei densityof about 1.9x109m-3. Figure 23

shows that, at this value of the nuclei densityand h=50 W/m2K, a wholly equiaxed

structureis predicted,whichagreeswith theexperimentalobservations[25]. In fact,Figure

23 indicatesthatthetransitionto awhollyequiaxedstructuretakesplaceatanucleidensity

of roughly 108m-3.

The abovecomparisonsshowthat, given a realistic nucleationmodel, quantitative

agreementbetweenmeasuredandcalculatedCET positionscanbeobtained.More well-

controlledexperimentsareneededtofully validatethemodel.Furthermore,meltconvection

andcrystalmultiplication/transportremainto beincludedfor situationswherediffusion is

notdominant.
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5. CONVECTIVE TRANSPORT IN DENDRITIC ALLOY

SOLIDIFICATION

While the prediction of diffusion-dominated alloy solidification has reached a

considerable level of sophistication in recent years, the inclusion of melt convection and the

transport of solid phases in the form of dendrite fragments and small equiaxed crystals, has

only begun to receive serious research attention. The major challenge lying ahead is the

quantitative modeling of the interactions between the flow and the dendritic microstructure,

leading to the kind of micro/macroscopic predictions discussed in Section 4 for diffusional

transport. Instead of providing a complete account of all studies in this area, the following

subsections focus on several selected issues that are the subject of intensive present

research efforts, but are largely unresolved. The discussion is conveniently divided into

two sections corresponding to columnar solidification with a rigid and stationary solid

phase and equiaxed solidification with melt convection and solid transport. A third

subsection briefly discusses important issues in coupled columnar/equiaxed solidification

with convection. In the following, all volume averaging symbols are omitted, and <_Pk >k

is simply denoted by _Pk. The overbar is retained to designate interfacial quantities.
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5.1 Columnar Solidification with Stationary Solid

Models of columnar solidification with melt convection and a rigid, stationary solid

phase typically neglect dendrite tip undercooling and calculate microstructural parameters,

such as the dendrite arm spacings "after-the-fact" rather than as an integral part of the

model. While numerical solutions of the model equations that describe columnar

solidification have illustrated the capabilities of such models to predict the development of

an irregular liquidus front, local remelting of solid, the development of flow channels in the

mushy zone and the establishment of macrosegregation patterns for the solidification of

salt-water solutions [86-88] as well as metal alloys [89-92], few studies have addressed the



effectsof microscopic behaviors on the macroscopic transport phenomena. There are two

important areas where what occurs on a microscopic level influences macroscopic transport

in columnar solidification: the influence of the morphology of the mushy zone on the

resistance it offers to flow, as characterized by the mushy zone permeability, and the effects

of microsegregation on macrosegregation. In addition, most attempts at modeling

convection during columnar solidification have considered only flow driven by the action

of gravity on density gradients caused by temperature and concentration variations in the

melt, i.e., thermosolutal buoyancy. Since the density of the solid and liquid phases is

usually quite different, however, the volume change that occurs upon solidification (i.e.,

solidification shrinkage) also causes fluid motion, and can lead to macrosegregation. While

there are other topics of concern in modeling columnar solidification, these issues have

been the subject of recent research efforts and are discussed in more detail in following

subsections.
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5.1.1 Reduced Macroscopic Equations. Before discussing the roles of microscopic

behaviors and solidification shrinkage in macroscopic model predictions, some background

on the assumptions used in deriving the model equations and the physical interpretation of

those equations is necessary. In this subsection, a macroscopic model [93] is described that

is, in essence, a generalization of models used by Bennon and Incropera [86], Beckermann

and Viskanta [87], Voller et al. [88], and others to predict convection and macrosegregation

during the columnar solidification of binary alloys. The model accounts for the presence of

at most three phases: liquid (subscript 1), alpha-phase solid (subscript _) and gamma-phase

solid (subscript _,). The macroscopic conservation equations in the model can be directly

obtained from the volume-averaged equations of Table 1, and are summarized in Table 2.

The assumptions made to obtain the equations listed in Table 2 include:

(1) The solid phases are attached to the mold wall and are rigid so that

v_ = v_ = 0 (54)



The modelis alsorestrictedtocreepingflow in themushyzoneandlaminarflow in the

bulk liquid regionssothatall dispersionfluxesmaybeneglected.

(2) All of thephaseswithinanaveragingvolumearein thermalequilibrium,i.e.,

To = T_= TI = T (55)

Thejustification for thisassumption is the same as in Section 4.1, and this enables the

use of the mixture energy equation in Table 2.

(3) As in Section 4.5.1, the liquid within an averaging volume is considered to be

solutally well mixed so that the interracial average and volume average concentrations are

equal, i.e.,

CI = Cls (56)

Due to solutal undercooling, this approximation may introduce some error at the dendrite

tips, but is reasonable in the porous dendritic mush. This assumption also makes it

unnecessary to distinguish between inter- and extra-dendritic liquid.

(4) Microscopic species diffusion in the solid phases is assumed to take one of two

limiting cases: complete diffusion, where the interfacial average and volume average

concentrations are equal, i.e.,

Csl = Cs s = cz, 7 (57)

or no diffusion, where there is a microscopic solute profile in the solid, i.e.,

Csi _ Cs s = ¢x, _, (58)

This covers two important limiting cases of solid microsegregation, and will be

discussed in more detail in Section 5.1.2.

(5) While all macroscopic solid species fluxes are assumed to be negligible, in order to

predict double-diffusive phenomena in the melt finite-rate macroscopic liquid species

diffusion is included. Only ordinary (Fickian) diffusion is considered.

(6) Thermodynamic equilibrium is assumed to exist at the solid-liquid interfaces so that

the interfacial temperature and concentrations can be related through the phase diagram.
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(7) Thephaseenthalpiesareassumedto varywith bothtemperatureandconcentration.

Also, all macroscopicspeciesdiffusiontermsappearingin themixtureenergyequation

areneglected.

(8) Gravity is assumedto betheonly bodyforce,andtheviscousstressesareassumed

to beproportionalto theratesof deformation.

(9) The flow throughthe porousmatrix of columnardendritesin the mushyzoneis

typically very slow sothat thedissipativeinterfacial stresscanbemodeledusingthe

mushyzonepermeability,K(2), in analogy with Darcy's law. More details regarding the

mushy zone permeability are given in Section 5.1.3.

(10) The phase diffusion coefficients that appear in the conservation equations are not

effective values that are functions of the local microstructure, but are set equal to their

microscopic counterparts.

The assumptions given by equations (2) through (5) are also illustrated in Fig.25.
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5.1.2 Microsegregation in the Solid. The first way that microscopic behavior can

affect macroscopic transport is through the influence of solid microsegregation. Since melt

flow can redistribute species segregated on a microscopic scale, accurate modeling of

microsegregation should, in principle, be even more important in the presence of

convection than for purely diffusional transport. Since microsegregation introduces solutal

gradients into the melt and influences the solid fraction evolution in the mushy zone, it can

also affect the fluid flow.

As discussed in Section 4.5.1, the term (SsPsDs//sl)(Csl - Cs) in the solid species

conservation equations in Table 2 physically represents the transfer of species at the

solid/liquid interface in an averaging volume due to microscopic species concentration

gradients within the solid. Since the quantity _ can be considered a characteristic

length for the local solid microstructure, and if tf denotes the local solidification time, the



quantity (SsDs/lsl)tfis a dimensionlessdiffusion time (Fourier number).Note that for a

simpleplate-likedendritegeometryandparabolicsolidificationratethisquantityreducesto

o_in Eq.(50).Then, two limiting casesof microscopicsolid speciesdiffusion can be

considered[18]:

SsDs
lsl tf >>1 (59)

or

SsDs
lsl tf<< 1 (60)

Equation (59) implies that the time required for species diffusion in the solid on a

microscopic scale is short in comparison with the local solidification time. Then,

examination of the solid species conservation equations in Table 2 reveals that the volume

average solid concentrations will be equal to the average interracial solid concentrations,

i.e., the solid phases will be solutally well mixed and Eq.(57) will be satisfied.

Conversely, Eq.(60) means that the time required for microscopic species diffusion in the

solid is much longer than the local solidification time, and the solid species conservation

equations show that there will be a microscopic concentration prof'fle within the solid in an

averaging volume as noted by Eq.(58). In other words, the solid will have "layers" of

different compositions, with the concentration of each layer uniquely related to the

concentration of the liquid from which it formed. In the absence of macroscopic advection

and diffusion of solute, these two cases reduce to the lever rule and Scheil model [3,94]

that have been used by metallurgists for many years.

In the majority of numerical simulations of columnar solidification, either Eq.(57) or

(58) is chosen as the model for microsegregation. Only two studies have directly compared

macrosegregation patterns for these two limiting cases. By simulating the solidification of

an NH4C1-H20 mixture, Voller et al. [88] determined that the general behavior for the two

cases was qualitatively similar, with the predicted macrosegregation for the case of no

solute diffusion slightly worse than that for complete solute diffusion. Schneider and

49



Beckermann[93] simulatedthesolidificationof a Pb-20wt% Snalloy usingthedomain

andboundaryconditionsshownin Figure25.Thefinal macrosegregationpatternsfor the

two limiting casesof microsegregationagainproducedvery similar macrosegregation

patterns, as shown in Figures 26a and 26b. In contrast with Voller et al. [88] the

assumptionof completediffusion led to slightly moreseveremacrosegregation.For the

diffusion-dominatedsolidificationof aPb-Snalloy,themovementof the liquidusisotherm

for thetwo caseswasalsoshownto differ only slightly [93,96]. However,thoseresults

alsoindicatethatthevolumefractionof eutecticin thefinal solidcanbequitedifferentfor

the two cases[96]. The resultsof SchneiderandBeckermann[93], as illustratedby the

final eutecticfractiondistributionsinFigs.26cand26d,indicatesimilarbehaviorwhenmelt

convection is considered.Figure 26c shows that when no solid speciesdiffusion is

assumedalargeportionof eutecticis formedthroughoutthecasting,with moreeutecticin

regionsthataremoreseverelysegregated.Fig.26dshowsthatwhencompletesolid species

diffusion is assumed,a largeportionof thecastingcontainslittle or no eutectic.These

resultsindicate that it maynot be necessaryto usemorecomplicatedmicrosegregation

models(e.g., including finite rate solutediffusion in the solid microscopicallyor more

carefully incorporating coarseningeffects) if one is solely interested in predicting

macrosegregation.However,suchcomplicatedmicrosegregationmodelsareprobably

necessarytoaccuratelypredicteutecticformation.

Anotherissuecloselyrelatedtomicrosegregationishowto modelthe localremeltingof

someof thesolid thathasformed.Sincethesolidis assumedto besolutallywell mixedon

a microscopicscalewhenusingEq.(57),thispresentsnodifficulty. WhenusingEq.(58),

however, thepresenceof a microscopicconcentrationprofile in thesolidcreatesproblems

during remelting[94,96].In thiscase,themannerin whichtheaveragesolidconcentration

variesduringremeltingdependson theconcentrationof thesolid that is melting.Clearly,

carefulexperimentationis necessaryto obtainaccurateandrealisticmodelsof remelting.
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5.1.3 Mushy Zone Permeability. The permeability of columnar dendritic mushy

zones has been measured in several studies (Poirier [97] and Liu et al. [98] provide

summaries), and can be correlated as a function of the solid volume fraction as well as the

primary and/or secondary dendrite arm spacings. The anisotropic structure of the columnar

dendrites also causes the permeability along the primary dendrite arms and perpendicular to

the primary arms to be unequal [97]. Unfortunately, experimental measurement of the

permeability is only practical for a limited range of liquid fractions (from 0.15 to 0.65). A

promising solution to this problem has been presented by Ganesan et al. [99], where

descriptions of real microstructures taken from quenched solidification experiments were

combined with numerical simulations of the microscopic flow along primary dendrite arms

for liquid fractions above 0.65. The results showed that the permeability could be described

well by analytical solutions for the flow through arrays of cylinders. Further complications

arise when the velocities in the mushy zone become high, and the assumption of creeping

flow breaks down. Two models have been proposed where higher order friction terms are

used to account for this effect [87,32], although at the present time there is not sufficient

experimental evidence to justify the inclusion of such terms in modeling the flow through

mushy zones.

The use of advanced permeability models in columnar solidification simulations has

been relatively limited. Neglecting the anisotropy of the mushy zone was shown to have an

effect on the convective flow during the solidification of an NHaC1-H20 solution

[100,101]. This, in turn, led to significant differences in the prediction of the growth of

double diffusive layers, remelting of solid and macrosegregation [ 101 ]. Felicelli et al. [90]

used correlations for measured perpendicular and parallel permeabilities at low liquid

fractions and analytical permeability relations for the flow through an'ays of cylinders at

high liquid fractions, but did not examine the effects of using these permeability relations.

To determine the influence of permeability relations on the flow and macrosegregation

during solidification simulations, Schneider and Beckermann [93] examined the use of two
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differentpermeabilitymodels.In thefirst caseanisotropicpermeabilityrelationslike those

of Felicelli etal. [90] wereused,while in thesecondcasean isotropicpermeabilityrelation,

basedon the Blake-Kozenymodelandusedextensivelyin solidificationsimulations,was

utilized. In theanisotropiccase,thedendriteswereassumedto growin adirectionopposite

the flow of heat.Figure27 showsthat the anisotropicpermeabilitiesjump by nearly a

factor of 100at thetransitionpoint betweentheexperimentalandanalyticalpermeability

expressions.The figure alsoshowsthat thepermeabilityparallel to theprimary armsis

always larger than that perpendicularto thearms,althoughthedifferenceis a factor of

around2 overa largerangeof liquid fractions.Thelargestdifferencebetweentheisotropic

and anisotropic permeabilitiesis at high liquid fractions. Since the initiation of the

formation of channelsin the mushyzoneoccursin regionswherethe liquid fraction is

high,thesedifferencearesignificant.Thelargedifferencebetweenthepermeabilityparallel

to theprimary armsandtheisotropicpermeabilityatlow liquid fractionsis notof critical

importance,sincetheflow velocitiesin regionsof low liquid fractionsarecomparatively

small.To illustratethedifferencesin themacroscopicmodelpredictionswhenusingthese

different permeability relations,Fig.28showspredictedvelocity and macrosegregation

distributions after 250 secondsfor the solidificationof a Pb-20wt% Sn alloy with the

domainand boundaryconditionsgivenin Fig.25.Figure28ashowsthatdueto thejump

between the experimentaland analytical anisotropic permeabilities, flow in regions

characterizedby a liquid fractionof greaterthan0.7 is muchstrongerthan in regionsof

smallerliquid fractions.Obviously,suchajump is notphysicallyrealisticandillustratesthe

needfor continuedwork to developpermeabilityrelationsvalid for all liquid fractions.

Examining Fig.28, the most noticeable difference in the solid fraction and

macrosegregationdistributions predictedusing the two permeability models is in the

number,lengthandorientationof thechannelsformedin themushyzone.Thesechannels

arepreferredflow pathsfor thesolutalbuoyancydriveninterdendriticflow. Thepresence

of tin-rich interdendriticliquid in thechannelsservesto lower the liquidus temperature,
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resultingin both local remeltingandthedelayedformationof solid.Many shortchannels

arepredictedwith the isotropicpermeabilitymodelbecauseat very high liquid fractions

(i.e.,at theedgeof themushyzone)theresistanceto flow is small(in comparisonwith the

anisotropiccase)due to thehigh permeability.Therefore,it is easyfor flow channelsto

beginto form.As theliquid fractiondecreasesslightly, thepermeabilitydecreasesrapidly,

it becomesmoredifficult for flow to "feed"thechannel,andits developmentis slowedor

stopped.Figure 28bconfirms thisbehaviorsinceneartheedgeof themushyzonethere

appearsto be flow into andoutof themushyzonevia themanychannelswhile in areasof

lower liquid fraction theflow iscomparativelyslowandmostlyupward.In theanisotropic

case, the relatively high permeability over a range of liquid fractions provides less

resistanceto theupward,solutallydrivenflow in themushyzone.Figure28aslaowsthat

thishasresultedin long,verticallyorientedchannels.

Sincetheuncertaintyin experimentallymeasuredpermeabilitiesis large,andespecially

sincenoexperimentalmeasurementshavebeenmadefor high liquid fractions,theseresults

show a definite needfor further investigationinto the permeability of mushyzones.

Furthermore,theresults suggestinformationon the mushyzonepermeabilitycould be

backedout from solidificationexperiments.Forinstance,onecouldmeasurethelengthand

orientation of the channelsin a solidified sample,and thenusemodel predictions to

determinewhattypeof permeability(e.g.,degreeof anisotropy,relativemagnitude,etc.)is

necessaryto reproducesimilarchannels.Anotherimportantissuethathasremainednearly

unexploredis thethree-dimensionalnatureof thechannels[92]. It is unclearwhethertwo-

dimensionalsimulationscanaccuratelydescribesuchan inherently three-dimensional

process.
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5.1.4 Shrinkage Driven Flow. The densitiesof the solid and liquid phasesof an

alloy will beunequalaswell asfunctionsof bothtemperatureandconcentration.Hence,

bulk liquid motion in the melt is necessaryto accountfor the volume contraction, or



shrinkage,that accompaniessolid/liquidphasechange.Typically, thedensityof thesolid

phaseis larger than that of the liquid and it becomesnecessaryto "feed" the volume

shrinkage.In thefoundry,this isaccomplishedby attachingrisersto thecasting,muchlike

the upper-right portion of the domain shownin Fig.25. Since this shrinkageflow is

towardsthe cooledboundaries,it redistributesanyrejectedsolutein themushyzoneand

formsapositivelysegregatedregionneartheseboundaries,termedinversesegregation.

Including contractiondriven flow, in addition to buoyancydriven flow, in single-

domainalloy solidificationsimulationshasalsoreceivedattentionrecently.ChiangandTsai

[102,103] investigatedflow patternscausedby shrinkagedriven flow, as well as the

interactionof buoyancyandshrinkagedrivenflow during thesolidification of a 1%Cr-

steel.However,speciesconservationwasnotconsideredandthesolid volumefraction in

themushyzonewasassumedto vary linearlywith temperature.Tsaiandco-workers[104-

107]obtainedgoodagreementbetweenpredictedandmeasuredinversesegregationprofiles

for unidirectionallysolidifiedaluminum-copperalloys.Sincethosestudiesfocusedon the

upwardsolidification of anAI-4.1 wt% Cualloy, wheretheheaviercopperis rejectedin

the mushy zone,stablethermaland solutalgradientsreducedthermosolutalbuoyancy

driven flow so that the segregationwas primarily due to contraction driven flow.

Therefore, the combined effects of natural convection and contraction flow on

macrosegregationwerenot investigated.Xu andLi [108,109]solvedthecompletesetof

conservation equations with both buoyancy and contraction driven flow for the

solidificationof anA1-Cualloy.Thecomputationalgrid usedin thesimulations,hoXvever,

was too coarseto capturedouble-diffusiveflows andlocal remeltingof solid. While no

effort wasmadeto examinetheeffectsof thecombinedflow on thefinal macrosegregation

patterns,goodagreementwithexperimentalresultswasobtained[110].

The modelequationssummarizedin Table2 arealsoapplicablewhenthe solid and

liquid densitiesare unequal.SchneiderandBeckermann[93] haveincludedshrinkage

drivenflow, in additionto buoyancydrivenflow, in their simulationof thesolidificationof
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aPb-20wt% Snalloy. Theresultsshowedthatshrinkagedriven flow wasmostimportant

during thelatterstagesof solidificationwhenbuoyancydrivenflow hasbeendampedout.

Figure29showstheshrinkagedominatedvelocityfields neartheendof solidification for

the two limiting casesof microsegregationdiscussedin Section5.1.2.This figure also

illustrates the coupling of the predictionof shrinkagedriven flow with the choice of

microsegregationmodel. Close comparisonof Figures 29a and 29b shows that the

magnitudeof theflow (especiallyin theriser)isslightly largerin Fig.29b,wherecomplete

diffusion in thesolid is assumed.This isdueto thefact thatin this casemostly primary-

phasesolid is forming while in thecasewherenosolid diffusion is assumedeutecticis

forming.Sincetheeutecticdensityisconsiderablylessthanthatof theprimary-phasesolid,

moreflow isneededto feedthesolidificationshrinkage.

Schneiderand Beckermann[93] also observedan interesting interplay between

shrinkagedriven flow andmacroscopicspeciesdiffusion in the liquid phase.Figure 30

showsinversesegregationprofilesfor theunidirectionalsolidificationof a Pb-20wt% Sn

alloy with nobuoyancydrivenflow. Previousinvestigationsof contractiondrivenflow and

macrosegregationhaveshownonlypositive(inverse)segregationnearthecooledboundary

[104-107]. Figure 30b also showsthis inversesegregation,exceptwhen the solid and

liquid densities are equal (i.e., no flow) where there is a nearly uniform mixture

concentrationacrossmostof thecasting.Figure30a,however,showsthat whenspecies

diffusion in theliquid isconsidered,thereis asmallnegativelysegregatedregionverynear

thechill thatis notpresentwhenspeciesdiffusion in the liquid is neglected.Thecauseof

thisbehaviorisdiffusionof speciesawayfromthewall dueto theconcentrationgradientin

theliquid formedby therejectionof tin intotheliquid duringsolidification.
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5.2 Equiaxed Solidification with Melt Convection and Solid Transport

A relative new topic is the modeling of combined liquid and solid convection in alloy

solidification, as may be present in equiaxed growth. Several studies have addressed this



problem by using averagedmixture equationsand neglectingundercoolingand grain

growth kinetics.Becauseonly a single(mixture) momentumequationis solved,somea

priori assumption must be made about the relationship between the liquid and solid

velocities. Voller et al. [88] investigated the limiting case where the solid and liquid

velocities are equal, which is valid for a highly dispersed solid phase. The viscosity of the

mixture was enhanced with increasing solid fraction to simulate the formation of a coherent

and rigid solid structure. When compared to a fully columnar structure, a more uniform

macrosegregation pattern was predicted. A hybrid model was developed by Oldenburg and

Spera [1111, where for a solid fraction below 0.5, the equal phase velocity/enhanced

viscosity concept was utilized, while for es above 0.5 a zero solid velocity model was used.

The transition was accomplished through the use of certain switching functionsl Flood et

al. [112] and Voller [113], on the other hand, introduced the concept of a consolidation

factor that specifies the relationship between the liquid and solid velocities. This factor is a

simple linear function of the solid fraction and varies from unity for es---_0 (equal phase

velocities) to zero at some given value of es corresponding to a stationary solid. Prescott et

al. [114] switched from a zero solid velocity model with melt flow to an equal phase

velocity model (with the viscosity equal to that of the liquid) for solid fractions below 0.01.

In order to model recalescence, they introduced a solid fraction model that accounts for

undercooling by specifying a certain decay rate of the undercooling from a maximum value.

The undercooling model was calibrated using experimental data and produced fair

agreement with temperature measurements for solidification of a Pb-Sn alloy. In general,

the validity of the previous models cannot be established, due to a lack of suitable

experimental data.

A different approach to the modeling of equiaxed solidification is provided by the use

of a so-called two-phase model [31,115,116]. Separate volume averaged conservation

equations are utilized for the solid and liquid phases. Therefore, no assumption about the

relationship between the liquid and solid velocities needs to be made, and phenomena such
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asfloatingor settling of free solid grains can be modeled. In addition, the two-phase model

distinguishes between the interfacial and bulk concentrations and temperatures, allowing

for the prediction of liquid undercooling, microsegregation and other effects on a

microscopic scale. Another key ingredient is the use of a transport equation for the number

density of grains, which allows for the inclusion of nucleation and the calculation of the

local dimension of grains [31]. Prakash [115,116] neglected the size influence of the grains

on the transport and solidification phenomena. Beckermann and Ni [117,118] presented

results for the macrosegregation pattern and final grain size distribution in equiaxed

solidification of an AI-Cu alloy.

Most recently, Wang [ 119] introduced a multiphase model of equiaxed solidification

that is patterned after the multi-phase/-scale approach outlined in Section 4, but includes

melt convection and solid transport. Results were obtained for a number of cases involving

equiaxed solidification of an AI-Cu alloy, and the model was partially validated against

experiments using the transparent NH4CI-H20 analogue alloy. In the following

subsections, this model is presented and the critical model assumptions are discussed.

Some of the work is of a rather preliminary nature, but the discussion will allow for the

identification of future research needs.
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5.2.1 Reduced Macroscopic Equations. As in Section 4, the system is assumed to

be occupied by three phases: the solid, and the interdendritic and extradendritic liquids,

which are separated by the dendrite envelope. Each of the three phases in Vo may have a

different velocity, concentration, and temperature. Again, the solid/interdendritic interface

is characterized by phase change, whereas the relative envelope motion is governed by

dendrite tip growth. The following assumptions are introduced:

(1) Local mechanical equilibrium exists, i.e., Ps = Pd = Pl = P-

(2) The momentum exchange due to interfacial movement is neglected.



(3) A certain flow partitioning betweenthe inter- and extra-dendritic regions is

assumed.As schematicallyshownin Fig.31,the liquid mayflow either throughthe

inter- or the extra-dendritic region. The relative portions can be quantified by

introducinga flow partitiontensor,_Cv,which isdefinedastheratioof the liquid mass

flux throughtheporousdendritesto thetotal liquid massflux; i.e.,

_dPd(Vd-Vs) = K:vefpf(Vf - Vs) (61)

and

Iqpl(Vl - Vs) = (1 - K:v)Efpf(v f - Vs) (62)

where ef and vf stand for the total liquid fraction, consisting of both the interdendritic

and extradendritic phases, and the mixture velocity vector for both phases, respectively:

ef=Ed + 51, and Efpfvf = edPdV d + £1PlVl . Note that when _v=Pded/(pfef), a uniform

flow distribution results; i.e., Vd = v! = vf. The coefficient _Cvis also called the fluid

collection efficiency of porous aggregates in chemical engineering [120]. A correlation

for _:v is developed in a later section. The concept of flow partitioning between the

inter- and extra-dendritic regions is introduced to simplify the solution of the

momentum equations in the multiphase model. Once toy is calculated, only the

momentum equation for the total liquid phase needs to be solved, and the individual

liquid velocity fields, Vd and v!, can be algebraically obtained from Eqs.(61) and (62).

(4) Local thermal equilibrium exists, i.e., Tk = Tkj = T. The justification of this

assumption is the same as in Section 5.1.

(5) The interdendritic liquid is well mixed so that Cds = Cdi = Cld = Cd = Ce. The

validity of this assumption has been discussed in Section 4.

(6) The dendrite envelope is spherical.

(7) Thermophysical properties are the same for the interdendritic and extradendritic

liquid phases.

(8) All dispersive fluxes are neglected.
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As discussedin Assumption3, only the solid and the total liquid phasesrequire

principal consideration.Thedistinctionbetweenthevariablespertinentto the inter- and

extra-dendriticliquidscanbemadealgebraicallyaftertheprimaryvariablespertinentto the

total liquid phase(f) areobtained.Theseprimaryvariablespertinentto thetotal liquid are

definedby therule-of-mixtures,i.e.,

volumefraction ef = ed + el (63)

density Pf_f = PdEd + Plel (64)

viscosity pfe_f = Pdedla d + Plell.t I (65)

mass diffusivity pfefDf = pdedD d + PlelD 1 (66)
ig , ,

thermal conductivity efkf = edk d + elk ! (67)

specific heat pfefcf= PdedCd + PlelCl (68)

concentration pfefCf = pdedCd + PleiCl (69)

velocity pfefvf = PdedVd + PlelVl (70)

With the assumptions stated above, a reduced set of model equations can be derived

from the general formulation presented in Table 1. These equations are summarized in

Table 3. Several observations on the equations listed in Table 3 are made in the following.

A. Remarks on the Model Equations

First, the phase change rate F s, a critical parameter in the solidification model, is

determined from the interfacial species balance listed in Table 3. Physically, this equation

implies that the species flux rejected into the interdendritic liquid due to phase change

(LHS) is either diffused into the solid and extradendritic liquid through intel'phase

exchanges within the control volume (the 1st and 2nd terms on the RHS), or stored in the

interdendritic region (3rd term on the RHS), or advected and diffused out of the control

volume (4th and 5th terms on the RHS).

Secondly, the momentum equation for phase (f) is obtained by summing up the

momentum conservation equations for phases (d) and (1) as listed in Table 1. The viscous

terms are linear so that they are additive, whereas the summation of the nonlinear advective
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terms results in an additional term (the last term on the RHS), where "i' is called the

momentum dispersion coefficient and is given by

[Kv 2 (1-Kv) 2-y= 1 - pf_f + (71)
LPd_ Pill

When _Cv=Pd_d/pfef (i.e., uniform flow through the inter- and extra-dendritic regions),

so that the last term in the momentum equation for phase (f) vanishes. This is why T is

called the dispersion coefficient.

A similar term also arises in the species conservation equation for the total liquid phase

of Table 3.

B. Secondary Variables

The model equations listed in Table 3 constitute a complete mathematical formulation

for eight primary variables: Es, Fs, Vs, vf, p, Cs, Cf and T, while the total liquid fraction,

ef, can be obtained from the constraint: _+ef=l. All quantities pertinent to the interdendritic

and extradendritic liquid phases are classified as secondary variables whose determination

from the above primary variables is explained below.

To distinguish the interdendritic and extradendritic liquid fractions from the total liquid

fraction Ef, one can resort to the following mass conservation equation for the interdendritic

liquid phase:

_--(tPded) + V-(PdedVd) = I-"e _ F s

where l-'e is related to the growth velocity of the dendrite envelope:

I-"e = Sep I Wne

(72)

(73)

Hence, the term 1-"e can be calculated from the growth model for the dendrite envelope,

which is provided in Section 5.2.3. Once e-d is obtained, the extradendritic liquid fraction is

simply equal to (ef - e.d).

By definition, the extradendritic liquid concentration can be calculated, once Cf is

available, from
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CI= (pfcfCf- Pd_ Ce)/(PlCl) (74)

where the relation Cd = Ce has been used due to the assumption that the interdendritic liquid

is well mixed, namely Assumption 5.

Likewise, the liquid velocities in the inter- and extra-dendritic regions are obtained,

respectively, from the definition of the flow partition coefficient:

Vd = Vs + 1¢v pfEf (vf- Vs) (75)
pdcd

Vl = Vs + (1-1%) pfEf (vf - Vs) (76)
plcl

in which JCvis calculated as shown in Section 5.2.4.

The above auxiliary relations for calculating the secondary variables from the primary

variables are also summarized in Table 3. To complete the mathematical system,

supplementary relations are, however, needed for the growth velocity of dendrite envelope

Wne, the solid/liquid inteffacial drag, M d the flow partition coefficient _¢v, the interracial
S'

diffusion lengths, lsd and lid, and the macroscopic transport properties as well. These

additional inputs to the multiphase model are provided in the following subsections. The

interracial area concentrations, Ss and Se, are given by the same morphological relations as

those derived in Section 4.2.
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5.2.2 Grain Nucleation. As an important microstructural parameter, the grain density

is needed for the evaluation of the envelope area concentration, Se ( see Section 4.2). Due

to solid motion, this grain density, n, is not only determined by nucleation mechanisms but

also modified by the flow field during solidification, according to the following

conservation equation [31]"

On
-_ + V.(vsn) = fi (77)

where the second term on the LHS is the flux of grains due to a finite solid velocity, Vs.

The term n is the net nucleation rate accounting for both the birth and death of grains due to



heterogeneousnucleation, remelting,dendritearm pinch-off, agglomerationand other

effects.Althougha numberof semi-empiricalnucleationmodelsareavailable,theydonot

explicitly account for fragmentationand agglomerationeffects in the presenceof

convection.Therealisticmodelingof grainstructureformationon themacroscopicscale

will largely dependon resolving theseissues.Careful experimentationcoupled with

solutionsof thepresentmodelequationsmayhelp in thisrespect.It is importantto realize

that for Vs_:0themeasuredlocalgraindensityin asolidifiedstructurehaslittle in common

with thenumberof grainsthatnucleatedatthatsamelocation.

At the present time, the simplest nucleation model, namely the instantaneous nucleation

model proposed by Stefanescu et al. [62] may be used, i.e. Eq.(34). However, due to the

transport of grains, several complications arise. It is assumed that nucleation can only occur

if the local grain density in a control volume before nucleation is equal to zero. This implies

that no new grains will nucleate in the immediate neighborhood of existing grains that may

have been transported into the control volume. In the presence of solid movement, grains

may be advected into regions of higher temperature and remelt to a sufficiently small

diameter dsi. In this case, death of the grains takes place, and the present nucleation model

instantaneously resets the local grain density to zero. The control volume in question is then

allowed to re-nucleate later when the conditions are right. Thus, grains may exist in regions

of superheated melt as long as their diameter is above dsi.
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5.2.3 Grain Envelope Growth. For convection-dominated dendrite tip growth, there

is ample experimental evidence showing that both the stability criterion and the species

gradients are affected by the flow field around the dendrite tips [121], and the diffusional

model presented in Section 4.4 is not applicable. A reliable and accurate model accounting

for the convection effects is, however, not yet available. To a first approximation, one can

assume a negligible influence of convection on the stability criterion, and thus the focus can

be placed on the fluid flow effect on the species transport field around the dendrite tips.



Considerableresearchhasbeenconductedin the literaturein orderto find analytical

solutions of the speciestransport problem arounddendrite tips in the presenceof

convection.A summaryhasbeengivenby AnanthandGill [122]. It wasfound that the

Stokesapproximationof theNavier-Stokesequationsfor convectionin a subcooledmelt

yields anexactsolutionfor shapepreservinggrowthof aparabolicdendrite.Thesolution

wasalsofoundto be in goodagreementwith theavailableexperimentaldataof Huangand

Glicksman[123].In termsof thetip PecletnumberPetandthedimensionlessundercooling

fL this solutioncanbewrittenas

n
_o exp[-_(f_)d'q]

f_ = 2Pet( f 1 dn) (78)
1 rl

where the function f(rl) is given by

2Pe_
f(rl) = 2Pet 1"12+ EI[(Pe_ + 2Pet)/Sc] [ r12(21n 1"1- 1) + 1] (79)

and the ambient Peclet number is based on the relative velocity between the liquid and the

solid dendrite; i.e.,

Pe_,, = IVl - vsl Rt/DI (80)

When Pe,,_---0, which implies no convection, Eq.(80) yields f(rl)=2Pedq 2 and Eq.(78)

reduces to the Ivantsov solution for pure diffusion as given in Eq.(47).

The solution of Eqs.(78-79) together with Eq.(45) provides a first-order approximation

for convection-dominated dendrite tip growth. It should, however, be cautioned that much

additional research remains to verify the applicability of this dendrite tip growth law in the

presence of convection.
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5.2.4 Solid/Liquid lnterfacial Drag. The dissipative interfacial stress in a

multiparticle system has traditionally been modeled using various approaches. For high

solid fractions (i.e., the packed bed regime), the porous medium approach is often adopted



(seealsoSection5.1),with thepermeabilityrepresentingakeyparameter[124,3]; whileat

low solid fractions (i.e., the freeparticleregime),the submergedobject model is more

frequentlyusedin whichthedragcoefficientis important[125].Recently,bothapproaches

have been unified by Wang et al. [126] for the multiparticle system of equiaxed

solidification, anda generalcorrelation(valid for all solid fractionsrangingfrom zero to

unity) for thedissipativeinterfacialstress,Mds' on the solid crystals has been obtained; i.e.,

M_s= 13f[32-_f Ef(vf - Vs) (81)
R 2

e

where 13 is a dimensionless parameter which is only a function of the particle volume

fraction and its morphology and Re is the envelope radius. The expression for 13is given by

= 13d (82)
13 [(1 - el) n + (13d/131)2n]l/2n

where

3_r-5 Ss

13d= (1 - esi)3/2 _eS e (83)

2 + 4/3rl5 -

2- 3r 1 + 3r 15- 2r 16

n = O. 176log 13d + 0.275

1 2132 (1- tanh __d/l]d) 1112

Cp(_Pe) 2132 + 3(i-tanh 13d/13d)J
(84)

(85)

The function Cp(_Pe ) accounts for the effect of an aspherical dendrite envelope, with _)e

being the sphericity of the dendrite envelope [39,127]. The following expression for Cp(_e)

has been proposed by Wang et al. [126]:

(86)

for 0.7>el>0.0

for 1 >el>0.7

While other details on the drag model are available elsewhere [126], several salient

features of the model are outlined here. First, note that this drag model accounts for the
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multiple lengthscalespresentin a dendriticstructure,namelySsandSe(or Re).Secondly,

the drag model encompassesmany importantlimiting cases,which include the single

equiaxeddendrite [59,127], and packedbedsof impermeableand permeablespheres.

Thirdly, the modelhasbeenvalidatedagainstvariousexperimentaldataavailable in the

literaturefor bothglobularanddendriticequiaxedcrystals[126].In particular,it wasfound

thatthis model improvesthepredictionof permeabilitiesof equiaxeddendritic structures

dueto its explicit considerationof multiplelengthscales.For sphericalsolidparticles,this

dragmodelreducesidenticallyto thewellknownStokeslaw for thedragcoefficientin the

freeparticleregime[125],while it coincideswith theKozeny-Carmanpermeabilityrelation

in thepackedbedregime.
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5.2.5 Flow Partitioning between Inter- and Extra-dendritic Regions. In

equiaxed solidification, it can be assumed that the flow partition coefficient is isotropic, so

that only a single value of _v is required. It has been shown by Wang et al. [126] that

K:v= (1- el)(13/13c02 (87)

where 13and 13d are given by Eqs.(82) and (83). Figure 32 illustrates the effects of the

extradendritic liquid fraction, el, and internal solid fraction, esi (i.e., the ratio of the solid

fraction to the grain fraction), on the flow partition coefficient in an equiaxed dendritic

system with Ss/Se=0.1. As can be seen, the portion of the flow through the dendrites

approaches zero in the free particle regime (i.e. higher el). On the other hand, in the packed

bed regime, the flow partition coefficient quickly increases as el decreases and reaches

unity at el=0, at which point all flow must be through the interdendritic spaces.

5.2.6 lnterfacial Mass Transfer. The solid diffusion length lsd is the same as in the

absence of convection, and thus Eq.(40) of Section 4.3 can be used. However, the liquid

diffusion length ahead of the dendrite envelope, lid, needs to be modified to reflect the



effects of flow. This can beaccomplishedthroughthe useof the following correlation

[119]:

where

and

de-2+lid 0"865(_E--_)1/3 " 1/3wee
(88)

EllVl - vsl de
Pee - DI (89)

2 + _(1-el) 5/3
Ce = (90)

2 - 3(1-el)l/3 + 3(1-el)5/3 -2(1-_1) 2

This correlation is based on the momentum-mass transfer analogy, and is derived along the

same lines as the interfacial drag expressions given by Eqs.(88-90). A comparison between

this correlation and Agarwars formula [ 128], which was employed previously by Ni and

Beckermann [117], indicated a discrepancy of less than 20 percent for all solid fractions

[119]. In addition, it should be mentioned that the correlation given by Eqs.(88-90)

neglects the effect of interfacial movement and does not reduce to Eq.(42) of Section 4.3 in

the limit of Pee--0. This may be justified by the fact that in the presence of convection, the

convection effect overrides that of interfacial movement in determining mass transfer rates.

Experimental work is underway to verify the above correlation for equiaxed dendritic

solidification [129].
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5.2.7 Macroscopic Transport Properties. The effective macroscopic viscosities _ts

and gl represent the rheological behavior of a multiphase mixture. They are dependent on

the viscous properties and deformations of the phases, the flow field, and the distribution

and geometry of the dispersed or suspended phase. To a first approximation, the liquid

macroscopic viscosity can be taken to be equal to its microscopic counterpart; i.e.,

_tI = _q (91)



In modeling of the solid macroscopic viscosity, the packing limit must be taken into

account when the grains impinge upon each other (i.e., when eg=eg), and form a coherent

and rigid solid structure. In this limit, Its must approach an infinite value so that the

macroscopic velocity gradients of the solid phase vanish. If the rigid solid is fixed to a

wall, the solid velocity will then be uniformly equal to the velocity of the wall (which may

be zero).

In the other extreme where eg---_0, the seminal theory of Einstein predicts that Its=3.5itl

[130]. In solidification systems where the grain fraction may vary anywhere from zero to

unity, a smooth transition between these two limits is necessary. Ni and Beckermann [117]

proposed the use of the Krieger model [131], which results in the following expression for

_ts:

C c

* Itl[(1- eg/eg)-2.5eg- (1 - eg)] (92)
Its= eg

Note that the right hand side of Eq.(92) reduces to 3.5 lal for eg--_0 and to an infinite value

for e.>_ec It should also be emphasized that for dendritic structures, the solid viscosity is
g"

not directly dependent on the solid fraction but rather on the grain fraction. In other words,

as soon as the grains reach the packing limit (eg is about 0.6), the solid structure becomes

c There has been amplerigid, even though the solid fraction may be much lower than eg.

experimental evidence to support this hypothesis. For example, experimental data for

different alloys [71,132] indicate that the packing limit can be reached at solid fractions

between 0.1 and 0.3 in a large-grained casting where the grain fraction is much higher than

the solid fraction. In contrast, in well-grain-refined castings, packing of the crystals was

found to occur at much higher solid fractions, between 0.5 and 0.65. This is because the

grain fraction is nearly equal to the solid fraction for small grains. Again, careful

experimentation is needed to verify the use of Eq.(92).

As a first approximation, the macroscopic thermal conductivity and mass diffusivity are

taken to be equal to their microscopic counterparts:
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kk = kk ; D k = Dk (93)

More discussion on these approximations can be found in Beckermann and Viskanta [8].
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5.2.8 Application to Solidification of an AI-4wt% Cu Alloy. Illustrative

numerical results have recently been reported by Wang and Beckermann [41] for a physical

system consisting of a two-dimensional rectangular cavity, as shown in Fig.33. The left

vertical wall is subject to convective cooling, while all other walls are adiabatic. The

thermal conditions fall roughly into the range of equiaxed solidification according to the

diagram of Kurz and Fisher [18]. The melt has an initial temperature of 930 K (10 K

superheat) and initial concentration of 4 weight percent of copper in aluminum, in the AI-

Cu system, the melt density increases with increasing copper concentration and decreasing

temperature, so that the thermal and solutal buoyancy forces in and near the mushy zone

augment each other. The solid density is generally greater than the liquid density [133].

Hence, crystal sedimentation is expected during solidification. The crystals may experience

partial slip at the walls if the diameter of the grains is larger than the length scale of the

surface roughness. To a first approximation, this effect may be modeled by the use of the

following boundary condition [ 134]:

(Vs)t Iw = -_,p _ Iw

The mean distance between particles, _,p, can be estimated from ([135])

(94)

(95)

For a small grain diameter, de, the slip coefficient _,p approaches zero so that a no-slip

condition for the grains results. Apparently, the issue of adhesion/separation of equiaxed

grains at mold walls deserves further research attention. Other details of the numerical

implementation may be found in Wang and Beckermann [41].



Representative results are shown in Fig.34 (at t=50 s) for a simulation where the nuclei

density, no, in the nucleation law, Eq.(34), was arbitrarily set to 109 m -3. The flow field

(Fig.34a) indicates a strong downflow adjacent to the cold, left wall. This flow is not only

driven by thermosolutal buoyancy forces, but also by the sedimentation of the solid grains.

The relatively small crystals, nucleated near the wall exert a large interfacial drag on the

liquid and "pull" it downward. Convection driven by sedimentation has been little

researched. A crystal sediment bed can be observed in the bottom fourth of the cavity. The

coherent and dense dendrite network in this bed forces the majority of the flow to bypass it.

Above the packed bed, a mixture of solid and liquid flows simultaneously. An almost

solid-free liquid region exists only in the upper one-third of the cavity, except for a narrow

layer on the left side. The mixture concentration distribution (Fig.34b) shows that the

relative motion between the liquid and solid phases causes negative segregation in the

regions of higher solid fraction. The negative segregation is strongest at the bottom where

the solute-poor crystals have settled. The isotherm plot in Fig.34c reveals that the lower

right corner is as warm as the upper portion of the cavity. This is a consequence of the

crystals that have settled there and are releasing a large amount of latent heat. The relative

velocity vectors in Fig.34d are defined as (vf - Vs), and further illustrate the movement of

the solid relative to the liquid. Above the packed bed, the relative velocity vectors are

upwards, implying that the downward component of the solid velocity is larger than the

one of the liquid; this is a direct evidence of sedimentation. In the packed bed region, on the

other hand, the solid velocity vanishes (Vs--0), so that the relative velocity vectors represent

the liquid velocity only. In the upper one-third of the cavity, the nuclei are so small that the

relative velocity vanishes.

The motion of the grains is illustrated in more detail in Fig.35. As already mentioned,

the local grain density is not only determined by the nucleation rate, but is also influenced

by the solid transport during solidification. It can be seen from Fig.35a that initially a

stream of highly concentrated nuclei is swept into the central part of the cavity. At t=30 s
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(Fig.35b),thecrystalslifted by theliquid flow alongtheright wall begin to re-settlenear

the left wall. In addition,acentralregionof lowergraindensityappears.This is because

thecrystals in this regiongrew to sucha largesizethatthey settleddown. This effect is

moreevidentin Fig.35c(t=50s),whichshowsapronouncedverticalvariationin thenuclei

densitydueto settling.Theinterfacebetweenthelowermushyzoneandtheuppernearly

solid-free liquid region (compareto Fig.34a)coincideswith a relatively sharpvertical

gradientin thegraindensity.At t=100s(Fig.35d),this interfaceis shiftedupwardsasthe

sedimentbedincreasedin height.Thegraindensityabovethebediscomparablylower.An

isolatedregionof lowergraindensitycanalsobeobservedat thebottomwall. Thiscanbe

explainedby a remeltingphenomenon,whichkills a numberof grains.The remelting is

dueto thecontinuedadvectionanddepositionof solute-richliquid in thealreadyestablished

sedimentbedat thebottom,resultingin aseveredepressionof theliquidustemperaturein

thisregion.

The final grain sizedistributionis shownin Fig.36a.Note thatin theabsenceof solid

transportthegrainsize(i.e., radius)wouldbeuniformly equalto 0.62mmcorresponding

to no=109m-3.The top zoneof largergrains(N2mm) canbedirectly attributedto the

sedimentationeffect, while the large grains at the very bottom are due to the above

explainedremeltingphenomenon.A stringof relativelysmall grains(lessthan0.5 mm)

extendsupwardsfrom the lower-left comerandalong theright wall. Referringback to

Fig.35, it canbeseenthat the locationof thisstringcoincideswith thepathof thehighly

concentratednucleistreamduringtheearlypartsof solidification.Alsoshownin Fig.36is

thefinal grainsizedistributionfor anothersimulation,wherethenucleidensity,no, in the

nucleation law was increasedto 1011 m-3 (Fig.36b). This second simulation may be

viewed to correspond to a more grain-refined casting. The resulting overall smaller grain

size in this case has a profound effect on the solidification and transport phenomena [41]:

(i) the equiaxed crystals tend to grow in a more globulitic fashion, and (ii) there is less

relative motion between the liquid and solid phases due to the larger interfacial drag. One of
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theconsequencesisamuchmoreuniformgrainsizedistributionin thecaseof no=1011 m-3

(Fig.36b) than for 109 m -3 (Fig.36a).

The effects of solid transport and different grain sizes on macrosegregation are

illustrated in Fig.37a to 37c, by comparing the results of three different simulations. Figure

37a corresponds to the case of a stationary solid phase, but with thermosolutal melt

convection, and no=109 m -3. Overall, large variations in the copper concentration are

present. The most prominent feature is the channel segregates. As opposed to the Pb-Sn

simulations presented in Section 5.1, the channels are oriented downward due to the

different direction of the solutal buoyancy forces in the A1-Cu alloy. Also, a highly

segregated Cu-rich region exists at the bottom of the cavity and near the right wall due to

the advection of solute-rich liquid during solidification. This macrosegregation pattern

should be contrasted with Figs.37b and 37c, which correspond to a moving solid phase

and no=109 m -3 and 1011 m-3, respectively. In general, the macrosegregation is much less

severe than in Fig.37a, and no channel segregates are predicted. Since macrosegregation is

due to relative motion between the solid and liquid phases, solid transport can be expected

to reduce macrosegregation in the present system. However, in cases where the solute-rich

liquid is less dense and the solute-poor solid is more dense than the initial melt (as, for

example, for hypoeutectic Pb-Sn alloys) a counter-current liquid-solid flow would result,

causing very strong macrosegregation [30]. Comparing Figs.37b and 37c, it can be seen

that a finer grain size (no=1011 m-3) in the AI-Cu system results not only in a more uniform

grain pattern, as already observed in Fig.36b, but also reduces the extent of

macrosegregation (due to less relative phase motion).
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5.2.9 Comparison of the Model Predictions with NH4CI-H20 Experiments.

Some limited validation of the model presented in Section 5.2 has been provided by

Beckermann and Wang [ 136] through comparison of model predictions with the NH4CI-

H20 experiments of Beckermann et al. [21]. The test cell used in the experiments is



schematically illustrated in Fig.38a and consists of a square enclosure surrounded on four

sides by heat exchangers through which a temperature-regulated coolant was circulated.

Initially, the enclosure contained an NH4C1-70wt% H20 solution slightly above the

liquidus temperature. Upon initiation of cooling, melt convection and, with some delay,

equiaxed solidification commenced. Density gradients were visualized using a

shadowgraph system and internal cell temperatures were measured using small

thermocouple probes. A description of the experiments can be found in [21].

In the simulation, measured cell wall temperatures were used as boundary conditions.

Without presenting further details, a representative comparison of measured and predicted

results at an intermediate time is shown in Figs.38b and 38c. There appears to be good

agreement between the measured and predicted extent and shape of the bed of sedimented

NH4CI crystals at the bottom of the enclosure. Considering that this bed is the result of

complex melt convection and solid transport processes, even this limited comparison can be

viewed as an encouraging result. The two most critical uncertainties were found to be the

modeling of the generation of equiaxed crystals (the grain density, no, was adjusted in the

model to achieve realistic crystal sizes) and their growth in the convecting melt (i.e., the

dendrite tip growth and the convective mass transfer from the crystals, both of which

control the intemal solid fraction of the crystals). Future research will be aimed at resolving

these issues.
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5.3 Issues in Coupled Columnar and Equiaxed Solidification with

Convection

Although Sections 5.1 and 5.2 show some promise with regard to modeling of purely

columnar and equiaxed dendritic solidification, there are numerous additional issues that

need to be addressed before coupled columnar/equiaxed solidification and the CET can be

predicted for situations where convective transport is important. First, the columnar model

presented in Section 5.1 needs to be extended to account for dendrite tip undercooling at the



columnarfront, becausewithoutthisundercoolingthegrowthof equiaxedcrystalsaheadof

the front wouldnot bepossible.This canbedoneusingthemulti-phase/-scaleapproach

alongthesamelinesasshownin Sections4 and5.2.Specialattentionneedsto bepaidto

propermodelingof theflow in thecolumnardendritetip region,sinceit is in this region

wheredendrite/flowinteractionsareespeciallyimportant.

Probablythe mostcritical modelingelementwill bethedevelopmentof quantitative

modelsfor thesourcesof equiaxedgrainsin thepresenceof convection.Convectionis an

important mechanismin the separationor fragmentationof dendrites.The small solid

particlesor fragmentscanbetransportedinto theinteriorbulk meltwheretheymaysurvive

andgrow into equiaxedcrystals.Crystalshavebeenfoundto separatefrom moldwalls and

from the upper,free liquid surface[26]. However,in the caseof an alreadyexisting

columnarmushyzone,separationof dendritefragments("grainmultiplication")canoccur

in the columnar tip region or insidechannelsegregates.Two mechanismshave been

proposed:(i) mechanical,by the shearforcesof the melt flow [171and (ii) localized

remeltingor "pinchoff" [137], wherecoarseningkineticsplayan importantrole [138]. All

theories have beenexperimentally confirmed in various situations,and the different

mechanismsmay, in fact, operatesimultaneously.To date,noquantitativemodelsare

availableto predictthefragmentationoccurrenceandrate.

In theareaof grainmultiplicationby localizedremelting,somerecentworkby Paradies

et al. [139] hasshedconsiderablelight on the physical phenomenainvolved and has

producedsomefirst quantitativemeasurements.Thefragmentationratewasmeasuredin a

modelexperimentusingthetransparentSCN-acetonealloy anda growthchamber,where

the melt flow wasalongthecolumnarmushyzonewith apreciselycontrolledflow rate,

concentration,andtemperature.It wasfoundthatthedendritesidebranchespinch off via

localizedmeltingoccurringcloseto theprimarydendritestem.Theimposedvelocityof the

melt flow alteredthe mushyzonemorphology,andthefragmentationratedramatically

increasedwith the flow rate. In theseexperiments,the velocity, temperature, and
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concentrationwerecontrolled globally, andthe resultswerepresentedin termsof total

systemparameters,suchaschamberReynoldsnumberand time from the start of the

experiment.However,for thisdatato beusefulin acontinuummodel (thatsolvesfor the

velocity,concentrationandtemperaturedistributions),thefragmentationratewouldneedto

becorrelatedin termsof thelocal parameters.Muchwork remains,andtheneedfor more

experimentscannotbeoveremphasized.
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6. CONCLUSIONS AND RECOMMENDATIONS

This chapter has summarized a number of fundamental studies of alloy solidification,

which have the goal of providing comprehensive models of the transport phenomena

occurring at the system scale while accounting for microstructural interactions. A large

variety of topics has been covered, ranging from diffusion dominated columnar and

equiaxed dendritic solidification to the simultaneous presence of melt convection and solid

transport. Nonetheless, all models propagate the same multiphase approach and the use of

volume-averaged continuum equations for each phase. Although the general procedures are

not new, their application to alloy solidification results in a unique framework for

incorporating both micro- and macroscale effects. In any case, the key to successful

modeling is the proper specification of the interface topology and the phase interactions.

Several examples have demonstrated that in the case of diffusion dominated solidification,

considerable progress has been made in the prediction of the compositional and structural

features of solidified parts. With the consideration of convective transport, the field has

moved away from traditional metallurgy into the domain of thermal scientists, who can

bring their tools to bear. Improved communication and close collaboration will be

necessary to resolve the many remaining modeling issues.

One advantage of the theoretical framework reviewed here is that it allows for the

identification of the critical modeling elements requiring further research attention. The

main issues can be summarized as follows:



• quantitative models for the origin and destruction of grains, especially in the presence

of convection where fragmentation, agglomeration, remelting, etc. can become

important;

• topological relations that do not rely on a priori knowledge of the dendrite shapes and

also take into account the rapid changes in the interface geometry during the very initial

and final growth stages;

• validated models for dendrite tip growth in an undercooled and convecting melt;

• improved multiparticle interfacial drag models, particularly at high liquid fractions;

• multiparticle interfacial solute transfer models, with and without convection, that are

valid during solid/liquid phase change;

• models describing the two-phase rheology as a function of the microstructure;

• models for the effective thermal conductivities and mass diffusivities in the averaged

equations for each phase;

• modeling of the dispersive fluxes in the presence of turbulent convection.

Other issues arise in the extension of the models to rapid solidification rates, multi-

component alloys, realistic phase diagrams including the eutectic and peritectic reactions,

mold filling, porosity formation, hot cracking, and others, none of which are discussed

here. Furthermore, the modeling work must be accompanied by the development of

improved numerical algorithms for multiphase problems.

In closing it should be noted that the transfer of this modeling and simulation

technology to industry is taking place, to a large extent, through commercial casting

solidification codes (see [15]). It is fortunate that these codes are finding rapid and

widespread acceptance in industry and are being integrated with other product and

manufacturing process design software. However, despite the obvious successes, caution

should be exercised when using the codes, particularly because of the many modeling

approximations or empiricism incorporated in some of them. As the appetite for more
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advancedmodelscontinuesto grow, the needfor morefundamentalresearchcannotbe

neglected.
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Table 2. Summary of the macroscopic conservation equations
describing columnar solidification.

Mixture Mass Conservation

_(t elp,) + V'(_lPlVl) = - _O-(t8ctptx) - -_-(eTp_)

Liquid Species Conservation
0CI

8191 _ + 81Pl vI'VCI = V'(81PlDI VCI)

- ecxPct 0t - e_'P7

+ [CI-Co_]-_t(8o_Pot) + [Cl-C T] -_t-(sypy)

Solid Species Conservation (s = ct, y)

Mixture Energy Conservation

_?_] ()T -_--AI Vl'7 T= V'{(81kl + 8sks)VT}elpn C! -_- + enpl -- C1

-N-

Ohll 0CI 0ha 0Ca
-slPl _-ilT_ - 8aPa C_-CdTOt 8_ac_ T-_

+ OCI T 81Pl _ + 8aPot Ot + 8_,p_,

[CI-C_] _t-(stxptx)- [CI- C y] _-(87P7) /

+ hal + the-  svpv)

Liquid Momentum Conservation

81Pl _ + 81Pl vrVvl =- 81Vpl + V. (81[.tl Vvl)

+ V" {EI_ ! [VVl] t + _1.1[VlV81 + V81Vl] }

+ Vl [-_-(80_p 0t)+ _-(t E,_0T) ] 8_.I.1K(2)" I- Vl + 81Pig
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Table 3. Summary of a multiphase model for equiaxed dendritic solidification

Mass Conservation
Solid Phase

_(t Pses) + V-(PsesVs) = Fs

Total Liquid Phase

_(t pfEf) + V-(pfEfvf) = - Fs

lnterfacial Species Balance (for Calculating Phase Change Rate)

( Ce- Csd)Fs = - "_'_( Csd- Cs) + plSeD_ ( Ce - El) +
lid

Ce
[Pded-_- + pde-dvdV Ce- V'(PdedD_V Ce)]

Momentum Conservation

Solid Phase

_9-(tPsesVs) + V'(PsesVsVs) = -esVp + V'(BsesVvs) + M d + Psesg

Total Liquid Phase

)_t(tpfefv f + V-(pf_fvfvf) = -efVp + V.(B}efVvf) - M d + elpfg + V.[ypfef(vf - Vs)(Vf - Vs)]

Species Conservation
Solid Phase

_(tPsesCs)+ V.(PsesvsCs)= V-(PsesDsVCs) + _3sdFs+ sSp__ Csd- Cs)
/sd "

Total Liquid Phase

_(t pfefCf)+V.(pfefvfCf) = V.(pfefD*fVCf)- [ CsdFs+ _ Csd- Cs)]
isd

+ V-{p_f(vf - Vs)[Cf - _vCd- (l-_v)CI] }

Mixture Energy Conservation

[(PsesCs + pfefcf)T] + V-[(PsesCsVs + pfeNfvf)T] =

V.[(esks+ efk_)VT] + Fs[Ah + (Cs- Cl)TE]

Auxiliary Relations for Secondary Variables
Interdendritic Liquid Fraction

_(t Pde-<l)+ V'(Pd_dVd) = SePl Wne - Us

Extradendritic Liquid Fraction

e 1= cf- £d

Extradendritic Liquid Concentration

C1 = (pt_fCf- Pded Ce)](Plel)

Inter- and Extra-dendritic Liquid Velocities

Vd=Vs+_:v pfef(vf_vs); vl=vs+(l-_v) Pfef
Paled p-_ (vf- Vs)
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FinalMacrosegregationpatternsfor: (a)astationarysolid(no=109m-3),(b)

movingsolid (no=109m-3),and(c) movingsolid(no=1011m-3)[41].

Comparisonof predictionswithNH4C1-H20experiments:(a)schematicof thetest

cell, (b) shadowgraphimageatt=13.5min,and(c) predictedsolid fractionimage
(whitefor es<0.1%; black for es>l%, and continuous gray scale for

0.1%<es<l%) and liquid velocity vectors (Ivlmax=l.7 cm/s) at t=13.5 min [136].
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